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Abstract—The booming development of deep learning applica-
tions and services heavily relies on large deep learning models and
massive data in the cloud. However, cloud-based deep learning
encounters challenges in meeting the application requirements of
responsiveness, adaptability, and reliability. Edge-based and end-
based deep learning enables rapid, near real-time analysis and
response, but edge nodes and end devices usually have limited re-
sources to support large models. This necessitates the integration
of end, edge, and cloud computing technologies to combine their
different advantages. Despite the existence of numerous studies on
edge-cloud collaboration, a comprehensive survey for end-edge-
cloud computing-enabled deep learning is needed to review the
current status and point out future directions. Therefore, this
paper: 1) analyzes the collaborative elements within the end-
edge-cloud computing system for deep learning, and proposes
collaborative training, inference, and updating methods and
mechanisms for deep learning models under the end-edge-cloud
collaboration framework. 2) provides a systematic investigation
of the key enabling technologies for end-edge-cloud collaborative
deep learning, including model compression, model partition, and
knowledge transfer. 3) highlights six open issues to stimulate
continuous research efforts in the field of end-edge-cloud deep
learning.

Index Terms—Deep learning, deep neural networks, edge
computing, cloud computing, end-edge-cloud collaboration, end-
edge-cloud computing

I. INTRODUCTION

DEEP learning (DL) attempts to mimic the human brain
using multi-layer neural networks to learn representa-

tions of data with multiple levels of abstraction [1]–[3]. In
recent years, with the explosive growth in data volume and
computational capabilities, DL has achieved groundbreaking
progress in image, video, speech, and audio processing [4]
and has played a pivotal role in propelling advancements in
artificial intelligence (AI) applications across diverse domains,
including healthcare and smart home [5], autonomous driving
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[6], smart city [7], and smart manufacturing [8]. However,
in practical applications, the effectiveness of a deep learning
model (DLM) is often enhanced with the size of the model,
which is indicated by the number of network layers and
model parameters. For example, the LeNet proposed in 1998
consisted of only 5 layers, while the ResNet introduced in
2015 featured 152 layers. Larger DLMs possess the ability
to learn high-level abstract features from complex and high-
dimensional data, leading to improved feature extraction and
inference performance. However, this advancement comes at
the cost of a rising need for computing and storage resources.
For example, even the VGG-16 network, with 138 million
parameters, requires approximately 1.6 billion floating-point
operations per second for processing and consumes around 528
MB of memory. More recently, increasingly complex DLMs,
especially the large pre-trained foundation models such as
GPT-3 [9], “Yuan 1.0” [10] and PaLM [11], pose significant
demands on computing resources as depicted in Table I. For
example, “Yuan 1.0” [10], with 245 billion parameters and a
5TB training dataset, was trained for 16 days on a computing
power platform of 1028 GPUs.

Such substantial storage and computing resource require-
ments greatly limit the application of large DLMs on edge
nodes or end devices with limited computational capabilities.
For example, the Hi3516E V200 SoC image processing chip
in the edge device, equipped with an Arm Cortex A7 CPU,
only possesses 512MB Onchip and 1GB Offchip memory
[12], which cannot efficiently train and execute large DLMs
such as VGG-16 (approximately 528MB) and VGG-19 (about
548MB). Consequently, cloud centers with robust computing
power, extensive storage capacity, and high data throughput
have become the primary platform for large DL applications.
However, cloud-based DL encounters certain challenges and
issues:

1) Response time of decision-making: The response time
of DL applications depends on the computation delay and the
communication delay. The computation delay is affected by
factors such as the size of DLMs, available computing power,
and the degree of task parallelism. Even if the cloud centers
have sufficient computing resources and mature parallelization
technologies for DLMs, the transmission of data between
the users’ devices and cloud servers introduces unavoidable
communication delays. Limited by current communication
technologies, wide area networks inevitably suffer from high
latency and unstable performance issues since it was originally
designed to increase bandwidth capacity and link efficiency
[13]. Moreover, the exponential growth of multi-modal data
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TABLE I
RECENT TYPICAL LARGE PRE-TRAINED DEEP LEARNING MODEL

Model Time Size (B) Hardware Training day
T5 2019 11 1024 TPU v3 N/A
GPT-3 2020 175 10000 GPUs 30
GShard 2020 600 2048 TPU v3 4
Yuan 1.0 2021 245 2128 GPUs 16
GLaM 2021 1200 1024 TPU v4 23.9
Gopher 2021 280 4090 TPU v3 38.3
LaMDA 2022 137 1024 TPU v3 57.7
PaLM 2022 540 6144 TPU v4 50
U-PaLM 2022 540 512 TPU v4 5
GPT-4 2023 N/A N/A N/A
PanGu-Σ 2023 1085 512 Ascend 910 100

generated by the proliferation of sensors and Internet of Things
(IoT) devices is putting tremendous pressure on the network.
This data can amount to hundreds of millions of megabytes
per second. For example, Google’s self-driving car alone can
generate up to 750 megabytes of sensor data every second [14].
Uploading such colossal volumes of data to cloud servers will
exert significant pressure on the core network and exacerbate
communication delays.

2) Lifelong-learning and self-adaptation: Mobile DL ap-
plications, such as unmanned vehicles and drones, need to
continuously interact with dynamic environments, along with
the ability to self-learn and self-adapt their behavior based
on perception and feedback. However, the adoption and up-
dating of cloud-based DLMs requires frequent interactions
between mobile devices, such as vehicles, and the cloud
center, resulting in increased energy consumption for these
mobile devices. Furthermore, unreliable networks may cause
transmission interruptions or errors, significantly affecting the
lifelong learning, adaptation processes, and overall robust
operations of industrial DL applications.

3) Data security and privacy: The traditional cloud com-
puting paradigm involves transmitting raw or pre-processed
data to the cloud for storage and analysis. Despite numerous
studies on encrypted communication and computing technolo-
gies, their widespread application and deployment have been
constrained by the high costs associated with encryption and
decryption. Moreover, data owners are increasingly prioritizing
data privacy and security, leading to their reluctance to allow
personal data to leave the local area. Therefore, decentraliza-
tion and the emphasis on processing at or near the data sources
whenever feasible become imperative.

Confronted with these challenges and issues, the migration
of DLMs to edge nodes or end devices close to data sources,
known as edge AI, emerges as an effective solution. This ap-
proach aims to significantly reduce service response time and
alleviate the impact of data uploading on the network while
enhancing data privacy and improving DLM’s adaptability
[15], [16]. Numerous studies have explored various methods
for deploying DLMs on edge or end devices. One approach
involves deploying DLMs on a single edge or end device with-
out compromising performance and accuracy. This includes
model compression and acceleration [17], [18], lightweight
model design [19], and hardware design and optimization
[20]. Another approach leverages the collective resources of

multiple edge nodes or end devices to handle DL tasks and
overcome the limitations of individual devices, such as feder-
ated learning (FL). However, the computing, storage, energy,
and communication resources of edge and end devices are
often limited. Meeting the diverse and stringent requirements
of various applications remains challenging. Moreover, for
large-scale models, especially pre-trained foundation models,
the powerful computing power provided by cloud centers is
still indispensable. As a result, the computing paradigm of DL
has evolved toward end-edge-cloud computing.

Compared to relying solely on cloud computing or edge
computing, collaborative end-edge-cloud computing facilitates
real-time, fast-response, dynamic, scalable, and secure DL
services across different time and space scales, effectively
catering to the diverse requirements of DL applications [8].
Therefore, it has become a prominent research topic in both
academia and industry. While the end-edge-cloud computing
approach offers several advantages, certain issues and obsta-
cles need to be addressed to fully harness the potential of
end-edge-cloud collaborative DL:

• What are the essential elements of collaboration?
• How can effective collaboration be achieved?
• Which key technologies play a pivotal role?
• What are the challenges and research directions?
To answer the above questions and unlock the full poten-

tial of DL in distributed end-edge-cloud computing environ-
ments, this survey systematically analyzes key collaborative
elements and proposes modes and mechanisms of end-edge-
cloud collaborative DL, including co-training, co-inference,
and co-updating. Then, it highlights technological advances
and challenges, setting the stage for future research in end-
edge-cloud computing for DL.

A. Comparison and Our Contribution

1) AI for end-edge-cloud computing: AI, especially DL,
presents the potential to provide optimal solutions for key
problems and applications within the end-edge-cloud com-
puting framework, such as computing offloading, resource
allocation, and security and privacy. These aspects have been
extensively reviewed in various surveys [21]–[26]. For ex-
ample, Hua et al. [21] comprehensively examined existing
studies on edge computing performance optimization and
different application scenarios of AI. In these surveys, AI or
DL plays a pivotal role as an enabling technology in end-
edge-cloud computing, effectively functioning as AI for end-
edge-cloud computing. In contrast, this paper delves into the
comprehensive lifecycle of AI models, particularly DLMs,
within the end-edge-cloud computing framework, which is
known as end-edge-cloud computing for AI or DL. This
lifecycle encompasses model training, inference, and updat-
ing that involves dynamic adaptation of DLMs to real-time
environmental changes.

2) End-edge-cloud computing for AI: Deploying AI mod-
els, especially DLMs, on resource-constrained end devices or
edge servers (known as edge-AI), such as smartphones, IoT
devices, and embedded systems, is an essential aspect and key
technology within the end-edge-cloud computing collaboration
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TABLE II
COMPARISON WITH RELATED WORK

Category Ref. Time Key contributions and concerns

Elements and
mechanisms of
end-edge-cloud
DL

Model
compression
technologies

Model parti-
tioning tech-
nologies

Knowledge
transfer
technologies

An AI or DL
model on an
end or edge
node

[27] 2021 Compression technologies and applications for
IoT. ✘ ✔ ✘ ✘

[31] 2021 Compression technologies, tools, frameworks,
and hardware for machine learning on edge. ✘ ✔ ✘ ✘

[20] 2022 Hardware accelerators and model compression
technologies for DL on portable devices. ✘ ✔ ✘ ✘

[29] 2023 Reformable TinyML solutions including identi-
fied deployment schemes and available tools. ✘ ✘ ✘ ✘

[30] 2023 DLM efficiency from modeling techniques to
hardware support. ✘ ✔ ✘ ✘

Distribute an
AI or DL
model on
multiple ends
or edge nodes

[33] 2019
Various approaches for DL inference across end-
edge-cloud, and methods for training DLMs
across multiple edge devices.

Distributed edge
training and co-
inference

✔ ✔ ✘

[34] 2019
Key building blocks of edge machine learning,
different neural network architectural splits and
theoretical and technical enablers.

Distributed edge
training and in-
ference

✘ ✔ ✘

[35] 2020
Application scenarios of DL for edge and DL on
edge, and the practical implementation methods
and enabling technologies for DL on edge.

Edge FL and
edge inference ✘ ✔ ✘

[36] 2021 Emerging technologies for AI models regarding
inference and training on edge

Distributed train-
ing and edge co-
inference

✔ ✔ ✘

[37] 2021 Technical fundamentals, challenges and relevant
solutions of decentralized DL. FL ✘ ✘ ✘

[32] 2021
Enabling technologies for edge learning, includ-
ing model training, inference, security guaran-
tee, privacy protection, and incentive mechanism

Distributed edge
training and in-
ference.

✘ ✘ ✘

[38] 2022 Architectures, technologies, frameworks and im-
plementations in edge training and inference

Edge FL and co-
inference ✔ ✔ ✘

Distribute an
AI or DL
model on end-
edge-cloud
nodes

[41] 2022 Split computing and early exiting strategies for
DLMs ✘ ✘ ✔ ✘

[39] 2023

Collaborative learning mechanism for cloud and
edge modeling and advanced edge AI topics
including pretraining models, graph neural net-
works and reinforcement learning

FL and
efficiency-
primary
edge-cloud
collaboration

✔ ✔ ✘

[40] 2023

Distributed AI empowered by end-edge-cloud
computing, including computing paradigms,
fundamental and optimization technologies, se-
curity and privacy threats and defenses, and
applications.

Distributed train-
ing and inference ✔ ✔ ✘

DLMs on
end-edge-
cloud
nodes

This
paper N/A

Elements and mechanisms, key technologies,
and challenges and future research of end-edge-
cloud collaborative DL

End-edge-cloud
co-training, co-
inference, and
co-updating

✔ ✔ ✔

framework. On the one hand, several surveys [20], [27]–
[31] have focused on efficient DL technologies such as DLM
compression and acceleration, lightweight DLM design, and
hardware design to optimize DLMs for resource-constrained
individual edge or end devices. Providing a summary of recent
prominent efficient DL technologies will furnish readers with a
succinct grasp of research concepts and trends in this domain.

On the other hand, some studies [32]–[38] have explored
distributed AI or DL, particularly distributed training and FL
across multiple edge nodes or end devices. For example, Zhang

et al. [32] provided an overview of the enabling technologies
for edge learning, including model training, inference, security
guarantee, privacy protection, and incentive mechanism. While
they focused primarily on promoting collaboration within edge
computing environments, these surveys occasionally touch
upon methods for edge-cloud collaboration, which can provide
valuable insights to enhance collaborative DL across the end-
edge-cloud spectrum. Some insights in these reviews may be
similar to this paper, but they do not systematically consider
DL in the end-edge-cloud computing environment.
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Regarding AI or DL in the end-edge-cloud computing
context, the most relevant surveys are [39]–[41]. Yao et al.
[39] conducted a comprehensive survey encompassing both
cloud and edge AI. It gave the classification of edge-cloud
collaborative learning including privacy-primary collaboration
(such as FL) and efficiency-primary collaboration (such as
Auto-split [12] and EdgeRec [42]), and discussed potentials
and practical experiences of some ongoing advanced edge AI
topics including pre-trained models, graph neural networks and
reinforcement learning. However, this survey does not elabo-
rate on end-edge-cloud collaborative updating and knowledge
sharing, and it refrained from delving deeply into the technical
intricacies of end-edge-cloud collaborative learning.

Duan et al. [40] conducted a review of distributed AI em-
powered by end-edge-cloud computing, encompassing com-
puting paradigms, fundamental and optimization technologies,
security and privacy threats and defenses, as well as applica-
tions. However, it focused on the end-edge-cloud collaboration
for a single AI model, which involves distributed training
and inference of an AI model, such as FL and early exiting.
Collaboration and knowledge sharing among multiple AI
models (e.g. Ding et al. [43] deployed CloudCNN on the cloud
server to assist in training the EdgeCNN deployed on the edge
server by sharing soft targets and model parameters.) are rarely
explored. Meanwhile, it derived a taxonomy for optimization
technologies to conduct distributed training and inference, in
which model partitioning and compression technologies are
categorized into distributed training. While it described the
ideas and strategies of the optimizing techniques, there were
comparatively fewer discussions of technical details.

Matsubara et al. [41] investigated split computing and
early exiting approaches, intending to minimize end-to-end
inference latency while closely maintaining model accuracy
comparable to that of the original large model. However, these
two techniques are specifically designed to facilitate end-edge-
cloud collaborative computing for a single model. Techniques
such as transfer learning and knowledge distillation need to
be added to cover multi-model collaboration and knowledge
sharing within the end-edge-cloud framework. Additionally, as
the main subject of study [41] was not end-edge-cloud collab-
oration, it did not investigate the end-edge-cloud collaborative
elements and mechanisms, which could offer valuable insights
into a broader context of collaborative AI.

While certain studies have reviewed transfer learning [44],
[45] and knowledge distillation [46], [47], their exploration did
not emphasize the integration of these technologies with end-
edge-cloud computing. Furthermore, in our previous studies
[8], [48], we have conducted preliminary analyses of end-
edge-cloud collaborative elements and mechanisms related to
end-edge-cloud co-learning. However, these studies primarily
focused on co-inference and did not delve into the discussion
of the key technologies involved in this context.

In this study, we present a comprehensive comparison of
our paper with recent related studies, as shown in Table II.
The analysis reveals several main gaps in the current research
landscape, which are summarized as follows. (i) While AI for
end-edge-cloud computing and edge-AI have garnered con-
siderable attention, end-edge-cloud collaborative computing

for DL, is still in its nascent stages. (ii) Existing studies on
end-edge-cloud computing for AI or DL primarily focus on
edge-cloud or end-edge-cloud collaboration frameworks for a
single AI or DL model, neglecting end-edge-cloud computing
for multi-models. This results in an incomplete categorization
of end-edge-cloud collaborative DL approaches. (iii) While
most studies have primarily outlined the conceptual aspects
of AI on end-edge-cloud, there is a pressing need for in-
depth exploration and elaboration on these technologies to
effectively support end-edge-cloud computing empowered DL
applications. (iv) Existing research has not yet fully harnessed
the significant potential of knowledge transfer technologies,
such as knowledge distillation and transfer learning, and their
integration with the end-edge-cloud computing paradigm.

Overall, a systematic survey on end-edge-cloud computing
for DL has yet to be conducted. Therefore, this paper aims to
address these gaps comprehensively by thoroughly analyzing
key elements and mechanisms of end-edge-cloud collaborative
DL, highlighting advances in end-edge-cloud deep learning
technologies, and identifying challenges and future research
directions in this area.

This survey can serve as a valuable resource for researchers,
facilitating a quick grasp of recent advances and offering
valuable insights into this evolving field of study. The key
contributions of this paper are summarized as follows.

• We offer a pioneering analysis of the collaborative learn-
ing elements and mechanisms within the realm of end-
edge-cloud DL, encompassing the dimensions of data,
model (algorithm), and computing power.

• We derive a comprehensive taxonomy for state-of-the-art
collaborative learning within the lifecycle of DL. This
taxonomy encompasses end-edge-cloud co-training, co-
inference, and co-updating, aiming to provide a thorough
and detailed description and discussion of existing so-
lutions, with a special focus on knowledge transfer for
multiple DLMs on the end-edge-cloud.

• We present and discuss key technologies that enable end-
edge-cloud collaborative learning. These include model
compression, model partitioning, knowledge distillation,
and transfer learning, accompanied by insightful lessons
learned.

• We identify and highlight six research challenges and
open issues that need to be addressed to enhance the
performance of end-edge-cloud collaborative DL. These
findings pave the way for future research in the domain
of end-edge-cloud computing and its mature applications.

B. The Organization of the Survey

The organization of this paper is illustrated in Figure 1.
Section II presents an overview of end-edge-cloud collabo-
rative DL from the dimensions of data, model (algorithm),
and computing power, which answers the question of “What
are the essential elements of collaboration?”. Based on these
identified collaborative elements, Section III derives a tax-
onomy for end-edge-cloud collaborative DL and elaborates
on the mechanisms of each collaborative paradigm, which
answers the question of “How can effective collaboration
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Fig. 1. Overall organization of the paper.

be achieved?”. The taxonomy includes end-edge-cloud co-
training, co-inference, and co-updating. For the above collab-
orative paradigms, Sections IV-VI summarize and discuss the
corresponding key technologies, which answers the question of
“Which key technologies play a pivotal role?”. It’s important
to note that the end-edge-cloud collaboration mechanisms
discussed in Section III have the potential to leverage any
of the technologies detailed in Sections IV-VI. This synergy
arises from the compatibility and complementary nature of
these technologies. For example, the compressed model can
be trained based on transfer learning in a distributed manner,
while this distribution can be achieved through model parti-
tioning technologies. Section VII highlights notable challenges
and potential research directions which answers the question
of “What are the challenges and research directions”. Section
VIII concludes this paper. The common abbreviations are
presented in Table III.

II. END-EDGE-CLOUD COLLABORATIVE COMPUTING FOR
DEEP LEARNING

The fundamental pillars underpinning DL applications en-
compass data, model (algorithm), and computing power.
Therefore, the enabling elements for end-edge-cloud collab-
orative DL can be analyzed from these dimensions, as shown
in Figure 2.

A. Data Dimension

Within the context of knowledge management, the intricate
process of perceiving and comprehending objective phenom-
ena unfolds systematically across three interconnected stages:
Data, Information, and Knowledge.

1) Data-based end-edge-cloud collaboration: In the realm
of DL applications, “Data” refers to raw and unprocessed
observations and measurements that are collected from various
sources such as IoT sensors or the Internet. “Data”, by itself,
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TABLE III
LIST OF COMMON ABBREVIATIONS

Abbreviation Description
DL Deep Learning
AI Artificial Intelligence
DLM Deep Learning Model
IoT Internet of Things
FL Federated Learning
FedAvg Federated Average
Non-IID Non-Independently and Identically Distributed
FCL Federated Continual Learning
CPN Computing Power Network
NAS Neural Architecture Search
DAG Directed Acyclic Graph
6G Sixth-Generation mobile communication technology
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GNN Graph Neural Network
DNN Deep Neural Network
DLaaS Deep Learning-as-a-Service

Fig. 2. Analysis model for end-edge-cloud collaborative deep learning.

lacks context and meaning, making it challenging to answer a
question or support decision-making.

Data-based collaboration entails the direct uploading of
collected raw data from a local device or server to other end
devices, edge nodes, or cloud servers for further processing
such as training or inference. This approach facilitates efficient
sharing and utilization of raw data across various devices and
servers within a network. It is notably prevalent in cloud-based
DL applications.

2) Information-based end-edge-cloud collaboration: “In-
formation” represents computationally processed and well-
organized data imbued with logical relationships and con-
textual relevance. It empowers us to draw inferences and
discern patterns. According to Shannon, information serves
as a strictly quantitative metric for measuring communication
exchanges, crucial for reducing uncertainty. In DL, informa-
tion materializes as intermediate data during both training
and inference processes, such as gradients during the training
phase. Additionally, information can be acquired through data
preprocessing and analysis, encompassing tasks such as data
cleaning, transformation, combination, mining [49], encryp-
tion, and compression.

Information-based collaboration entails the sharing of such
processed data across the spectrum of end-edge-cloud nodes.

This manifests in various forms, including the transfer of com-
pressed or encrypted data from end devices to edge or cloud
servers for further processing, the exchange of intermediate
data generated by end-DLMs with edge or cloud-DLMs for
subsequent inference, and the collaborative sharing of model
gradients to facilitate end-edge-cloud distributed training.

3) Knowledge-based end-edge-cloud collaboration:
“Knowledge” encompasses facts, principles, and
interpretations of system operations acquired through
information processing or learning. It signifies the fusion
of information with existing knowledge and experiences,
resulting in profound insights, well-informed decision-
making, and the competence to effectively apply this
knowledge in diverse scenarios. In DL, knowledge can
be categorized into various types, including instance
knowledge, data representation knowledge, data relational
knowledge, model relational knowledge, feature knowledge,
and model structured knowledge. These forms of knowledge
constitute our comprehension of hidden information, patterns,
correlations, and trends within the data, which will be
discussed in Section III-C.

Knowledge-based collaboration signifies the sharing of the
knowledge as mentioned above across the end-edge-cloud
nodes. To illustrate, consider combining with knowledge dis-
tillation technology, where smaller student models can be
deployed on end or edge nodes while larger teacher models
residing in the cloud can oversee the training of these student
models by leveraging the teacher DLMs’ output feature knowl-
edge, intermediate feature knowledge, relationship knowledge,
and structural knowledge. This facilitates end-edge-cloud col-
laborative updating, as elaborated in Section III-C.

The exchange of information and knowledge serves to re-
duce data transmission overhead among end-edge-cloud nodes
and, to a certain extent, safeguards data privacy [8], [48]. For
example, intermediate data, such as feature maps of DLMs can
be considerably smaller in size than the original data, thereby
mitigating the risk of private data leakage.

B. Model Dimension

Given the dynamic nature of the DL application environ-
ment, characterized by the continual arrival of new data and
tasks, the concept of the DL lifecycle evolves into one of
lifelong or continuous learning, typically encompassing three
main phases: training, inference, and updating, as depicted in
Figure 2.

Training, including pre-training in large foundation models,
refers to the process of adjusting the parameters of a DLM
using a dataset so that the model can learn complex represen-
tations and functions from the data and make inferences for
a specific task [1]. The existing training methods are mostly
based on given datasets [4], [50], [51]. In these approaches,
the tasks (e.g., membership classes in a classification task) and
datasets are predefined and remain unchanged throughout both
the training and inference processes. However, DL systems op-
erating in the real world are exposed to continuous streams of
data and are required to continuously learn and remember mul-
tiple tasks from dynamic data distributions [52], [53]. While
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training a model on a new large dataset that consists of new
and old datasets from scratch is a pragmatic approach, it can
be resource-intensive and time-consuming, particularly when
dealing with extensive and diverse datasets. Further training
the deployed DL model with only the new data is an alternative
promising solution, but it faces the significant challenge of
catastrophic forgetting, where previously acquired knowledge
fades when assimilating new and unfamiliar data observations
[54]. Recent techniques such as incremental learning [55] and
lifelong learning [50], [52], [56] have focused their efforts on
solving the catastrophic forgetting problem and enabling DL
to continuously learn and update from incrementally available
heterogeneous data.

Given that the traditional training concept doesn’t involve
catastrophic forgetting and continuous learning, and to high-
light that DL is an evolutionary, constantly learning, and
adapting process, we employ the broader term “updating” to
encompass continuous learning such as incremental learning
and lifelong learning, setting it apart from the conventional
notions of “training”. Naturally, the “updating” stage occurs
after the DL model is trained in the lab and deployed in
the production environment. In summary, following the initial
training and inference, DL undergoes a continuous updating
phase, encompassing the full life cycle of DL.

In the traditional cloud-based DL application framework,
DLMs are typically executed on high-performance servers
with access to extensive data. This aligns with the paradigm
of machine learning as a service [57] that offers data owners
the capability to train and deploy their DLMs on a cloud
platform without the need to construct their own computing in-
frastructure and development environments. In contrast, within
the realm of end-edge-cloud collaboration, the DLM lifecycle
activities can be carried out at the end devices, edge, or cloud
servers. The end-edge-cloud collaborative computing holds
significant potential in facilitating the processes of end-edge-
cloud co-training, co-inference, and co-updating. For example,
FL-based co-training and co-updating can be executed on end-
edge-cloud nodes, while co-inference can be achieved through
specific mechanisms such as early exit or model partitioning,
as detailed in Section III-B.

C. Computing Power Dimension

As shown in Figure 3, cloud servers, edge servers, or end de-
vices each offer computational support for DL. Cloud servers
possess ample storage and computing resources. However,
cloud-based applications face challenges such as high latency,
limited situation awareness, and data privacy considerations.
Edge computing, on the other hand, seeks to enhance user
experience by deploying edge servers at the network edge
near end devices or data sources. These edge servers pro-
cess user requests with an awareness of location, delivering
reduced latency and alleviating core network congestion [58].
Nevertheless, edge servers have considerably more limited
computing resources than those of cloud centers and cannot
efficiently host large-scale DLMs. End devices encompass
a wide array of heterogeneous IoT and embedded devices,
including laptops, mobile phones, industrial robots, cameras,

Fig. 3. End-edge-cloud computing collaboration framework.

microcontroller units, etc. While these devices can provide
prompt computing services, executing DLMs, even lightweight
ones, on end devices presents a challenge due to their severe
computational constraints. Comparatively, end-edge-cloud col-
laborative computing for DL combines the advantages of these
three computing modes. It facilitates the integration of data
processing outcomes from different scales and locations to
meet diverse application requirements.

As shown in Figure 3, collaboration modes in computing
can be classified into vertical collaboration, horizontal collab-
oration, and integrated collaboration based on the computing
hierarchy.

1) Vertical collaboration: It pertains to the cooperative and
coordinated efforts spanning different layers of the end-edge-
cloud computing system. Its primary objective is resource op-
timization and the enhancement of overall system performance
by harnessing the unique capabilities of each layer.

2) Horizontal collaboration: It concentrates on the col-
laboration among multiple computing nodes within the same
layer, such as collaboration among edge computing nodes. By
horizontally distributing DL computing tasks, it can improve
system scalability, robustness, and load balancing within a
distributed computing environment.

3) Integrated collaboration: It represents a hybrid model
encompassing elements of both vertical and horizontal col-
laboration. This mode involves the seamless integration and
coordination of computing resources, data, and services across
multiple layers and entities. It capitalizes on the strengths of
each component to maximize the benefits of end-edge-cloud
computing, enabling efficient and flexible DL applications.

In summary, through a comprehensive examination of the
enabling factors within end-edge-cloud collaborative DL, form
data, models, and computing power aspects, it becomes fea-
sible to formulate strategies and mechanisms that efficiently
leverage these elements. This, in turn, facilitates the creation
and deployment of collaborative DL systems that harness
the benefits of distributed end-edge-cloud computing environ-
ments as well as meet the distinct needs of various applica-
tions.
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III. END-EDGE-CLOUD COLLABORATION MECHANISMS
FOR DEEP LEARNING

This section is dedicated to introducing mechanisms and
approaches for end-edge-cloud co-training, co-inference, and
co-updating, structured around the model’s lifecycle.

A. End-Edge-Cloud Collaborative Training

For a single DLM, end-edge-cloud co-training, rooted in
the concept of distributed training, involves the process of
training a model by utilizing multiple computational resources,
including end devices, edge servers, and cloud servers. Each of
these resources either holds a partition of the dataset (referred
to as data parallelism) or a partition of the model (referred to as
model parallelism). End-edge-cloud co-training offers several
advantages: (i) It can substantially reduce the training time
for large datasets and complex models that may not fit into
the memory of a single machine. (ii) It leverages existing end-
edge-cloud computing resources, providing cost and efficiency
benefits. (iii) It has the potential to enhance overall model
quality and accuracy by incorporating diverse perspectives and
reducing overfitting. In the following sections, we introduce
two primary parallelism approaches. Additionally, a hybrid
approach that combines both data and model parallelism
methods is a viable option.

1) Data parallelism-based end-edge-cloud co-training: In
data parallelism-based approaches, such as FL, each compu-
tational node within the end-edge-cloud possesses a copy of
the model and processes a subset of the training data. Subse-
quently, the updates to local model parameters are aggregated
to update the global model. Data parallelism can be further
categorized into centralized data parallelism and decentralized
data parallelism.

- Centralized data parallelism. Parameter server archi-
tectures enable the training of DLMs with a large number
of parameters on distributed clusters of machines, making it
possible to process massive datasets efficiently. Typically, a
central parameter server is employed to distribute and manage
model parameters across multiple machines or nodes. This
centralized data parallelism approach possesses characteristics
such as easy deployment, high scalability, and high fault
tolerance. A typical example is the federated average (FedAvg)
algorithm [59]. Within the end-edge-cloud framework, a cloud
or an edge computing node commonly serves as the parameter
server, while each worker node typically represents an edge or
end computing node. The training process under the param-
eter server architecture is as follows. (i) Each worker node
processes its assigned data batch to calculate the gradient of
the loss function with respect to the model parameters w, and
then transmits the gradient information gi to the parameter
server. (ii) The parameter server aggregates these gradients
gi from all worker nodes and computes the updated model
parameters for the global model using an algorithm such
as w′ = w − η

N
i=1 gi, and distributes the global model

parameters back to all worker nodes. (iii) Repeat the above
steps until the global model converges.

The training process goes through multiple iterations. For
parameter aggregation, the synchronous and asynchronous ap-

proaches can be adopted. In the synchronous scheme, worker
nodes synchronize their model updates to a parameter server at
predefined synchronization points. Participants wait for other
worker nodes to complete their local training before moving
to the next round. In the asynchronous scheme, participants
send their model updates to a parameter server independently
whenever they are ready, and do not need to wait for others.
While the asynchronous scheme offers advantages in terms
of flexibility and efficiency, it can also lead to parameter
inconsistencies and challenges in managing the timing of
updates. In contrast, the synchronous scheme ensures that
each worker node starts each epoch with an identical copy
of the global model. This not only theoretically assures model
convergence but also ensures the reproducibility of the training
process [60].

- Decentralized data parallelism. The decentralized data
parallelism architecture does not rely extensively on a param-
eter server, utilizing it solely to initialize the global model pa-
rameters and facilitate communications among working nodes
rather than participating in the model update process. Con-
sequently, this architecture minimizes the need for frequent
global information exchange. A typical training process within
a decentralized structure is as follows. (i) In each epoch, a
worker node updates the gradient using its local data and sends
the gradient to another designated worker. (ii) The designated
worker node updates the local model using its local data and
the received gradients. (iii) Repeat the above steps until each
worker node completes the model update, after which the final
model parameters are broadcast to all participating parties.

- Personalized FL. Data parallelism is commonly employed
in DL involving large training datasets or geographically dis-
persed data. Traditional data parallelism algorithms typically
assume homogeneity among participants, with each party’s
training samples following an independent and identically
distributed pattern. In contrast, the end-edge-cloud co-training
architecture introduces variations in hardware and software
configurations across computing nodes. Moreover, growing
privacy concerns and data regulations such as the General Data
Protection Regulation [61] have led to fragmented training
data. This situation, coupled with the widespread presence of
non-independently and identically distributed (Non-IID) data
in real-world scenarios, will impact the performance of the
global DLM. For example, the accuracy of the traditional
FedAvg algorithm is notably affected by weight divergence,
leading to reduced performance [62]. Furthermore, the global
DLM may fail to capture individual participants’ specific
characteristics and preferences, since a unique global model
is trained to fit different participants with heterogeneous local
data distributions. To tackle these challenges, personalized
FL can be integrated into the end-edge-cloud architecture.
It is dedicated to solving Non-IID problems and training a
personalized model for each participant while still leveraging
the advantages brought by FL.

One general personalized FL approach is to train a global
model and then personalize it for each participant through
additional training or fine-tuning on each local dataset. This
approach’s efficiency depends on the performance of the
global model, so many PFL methods aim to address the
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performance issues of global models under Non-IID datasets,
such as parameter divergence, data distribution biases, and
unguaranteed convergence, to improve the performance of
subsequent personalization on local data.

A straightforward method for mitigating data heterogeneity
among different participants involves sharing a small portion
of private data or private statistical information [62]–[64]. For
example, Huang et al. [63] proposed a data-sharing strategy
to optimize the training process on Non-IID data by creating
a small subset of data that is globally shared between all the
edge nodes. Experimental results show that accuracy can be
improved by 30% for the CIFAR-10 dataset with just 5% of
data shared globally. However, this method may be impracti-
cal, as sending local data to the server violates the fundamental
privacy assumption of FL. While privacy-preserving tech-
niques, such as differential privacy, can be employed to address
privacy concerns, they may lead to performance degradation
within the FL framework. Therefore, Virtual Homogeneity
Learning [65] was proposed to rectify the data heterogeneity
by sharing a virtual homogeneous dataset among all clients.
The virtual dataset, independent of the private datasets, can
be generated from the pure noise shared across clients. Its
purpose is to calibrate the features of heterogeneous clients.
However, implementing virtual homogeneity learning not only
imposes an additional burden on network bandwidth due to the
transmission of virtual data but also necessitates careful design
and construction of such auxiliary data.

An alternative method focuses on fine-tuning and optimizing
the FL training process to address the challenges posed by
data heterogeneity without resorting to synthetic datasets. This
involves adjusting training algorithms, hyperparameters, or
parameter aggregation methods. FedProx [66] introduced a
proximal term to the local subproblem of FedAvg, limiting
the impact of variable local updates. The proximal term offers
two advantages: (i) It encourages more stable local updates by
constraining them to be closer to the initial (global) model.
(ii) It facilitates the safe incorporation of partial updates from
selected devices. Numerous other studies have also improved
and optimized FedAvg from different perspectives under non-
IID datasets, such as normalization and modulation of commu-
nication frequency [67], momentum updates [68] and control
variables [69], and adaptive optimizers [70].

In addition, techniques such as meta-learning, transfer learn-
ing, knowledge distillation, and multi-task learning have been
applied to support personalized or device-specific modeling.
For example, knowledge distillation can be used to pass
on knowledge obtained from a high-performance model to
enhance the performance of a simpler device-specific model,
while multi-task learning enables a model to learn multiple
related tasks simultaneously to provide better personalized
support or device-specific modeling. These methods can be
combined with FL to deal with statistical data heterogeneity,
such as FedMeta [71], PerFedAvg [72], personalized FL [73],
FedFomo [74], FedRECON [75] and Fedavg-Reptile [76] on
federated meta-learning. Further advancements in personalized
FL can be found in the literature [77].

Overall, data parallelism-based end-edge-cloud co-training
offers a feasible solution for training large-scale DLMs with

Fig. 4. Deep learning model parallelism at layer-level and neuron-level.

extensive training data. However, (i) as the number of het-
erogeneous nodes participating in training increases, the com-
munication overhead associated with parameter and gradient
updates among nodes may become a bottleneck. (ii) Due
to the varying performances of heterogeneous nodes across
the end-edge-cloud spectrum, optimal batch size allocation
during training becomes essential. Failing to achieve this
balance may lead to an extended training time to achieve
the desired level of accuracy. (iii) To maintain synchronized
and consistent model parameters across various end-edge-
cloud nodes, synchronization strategies are required, which can
lead to reduced training efficiency and fluctuations in training
speed. (iv) Debugging and troubleshooting in the end-edge-
cloud distributed environment are typically more complex, as
issues may involve multiple nodes and components that are
geographically distributed.

2) Model parallelism-based end-edge-cloud co-training:
It involves the division of a DLM across multiple computing
nodes in the end-edge-cloud architecture. Each node assumes
responsibility for computing specific segments of the model,
such as forward and backward computations. The computed
results are subsequently exchanged among nodes to facilitate
gradient propagation and the model parameter updates. Model
parallelism strategies can be broadly categorized into layer-
level parallelism and neuron-level parallelism, as shown in
Figure 4. Furthermore, a hybrid approach combining both
layer-level and neuron-level parallelism methods presents a
viable option.

- Layer-level parallelism. Given that a DLM typically
comprises consecutive layers, a straightforward model paral-
lelism strategy involves dividing a large DLM by layers. A
set of consecutive layers is grouped and assigned to a specific
computing node within the end-edge-cloud architecture. These
nodes perform forward and backward computations on mini-
batches of data in a pipelined manner. However, a limitation
of this approach is that only one node performs computing
tasks at any given moment, resulting in idle periods for other
nodes and, consequently, an inevitable increase in training
time. To address this issue, the concept of pipeline parallelism
[78], [79] has been introduced. Pipeline parallelism combines
the principles of both model parallelism and data parallelism.
In pipeline parallelism, each mini-batch of data is further
divided into smaller batches (micro-batch). The execution
is then pipelined across these micro-batches, enabling all
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nodes to engage in parallel computing to the greatest extent
possible. Each micro-batch undergoes two passes: forward
pass and backward pass. The scheduling of these passes and
the aggregation of gradients vary among different approaches.
Some approaches, such as GPipe [78], employ synchronous
scheduling, while others, such as PipeDream [79], adopt an
asynchronous approach.

- Neuron-level parallelism. It involves the partitioning
of neurons, such as weight matrices, filters, and convolution
kernels in a convolutional neural network (CNN), into multiple
segments along a specific dimension. These segments are
then processed independently on various computing nodes
within the end-edge-cloud infrastructure. Megatron-LM [80]
is a technique to train large-scale transformer models, in
which one-dimensional tensor parallelization is implemented
for the transformer’s multilayer perceptron and self-attention.
However, in Megatron-LM, each node is required to handle
the entire set of activations, potentially causing memory bot-
tlenecks when dealing with large-scale models. To alleviate
this memory constraint, researchers have explored alternative
forms of tensor parallelism, such as 2D [81], 2.5D [82] and
3D [83] parallelism, all based on the scalable universal matrix
multiplication algorithm. These approaches aim to reduce
memory requirements while maintaining efficient paralleliza-
tion for neural network training.

Overall, model parallelism primarily serves as a solution
to address the challenges in the training process, presented
by extremely large-scale DLMs that surpass the capacity of
a single computing node. However, (i) model parallelism
introduces a notable increase in communication overhead
compared to data parallelism. In data parallelism, the transfer
of model parameters and gradients among different nodes is
the primary communication requirement. Conversely, model
parallelism necessitates the transfer of intermediate data, such
as feature maps, contributing to a more substantial communi-
cation overhead. This aspect underscores the significance of
addressing communication overhead as a potential bottleneck
in model parallelism. Considering this challenge, a model
characterized by a more locally connected structure tends to
be better suited for model parallelism than one with a more
fully connected architecture. (ii) Within the end-edge-cloud
system, the presence of diverse computing resources, including
GPUs, FPGAs, and TPUs, each possessing varying computing
power and communication bandwidth, further complicates the
task of optimizing the partitioning of a DLM. (iii) Not all
model architectures are easily adapted to model parallelism.
Some models such as recurrent neural networks may require
additional engineering to make them compatible with model
parallelism techniques. (iv) Pipelined model parallelism is
constrained by the execution time of the front model, and
any error in previous calculations can lead to a complete
computational stall.

B. End-Edge-Cloud Collaborative Inference

1) Efficient end-edge-cloud progressive co-inference via
early exiting: The improved performance achieved by adding
more layers to a DLM comes at the expense of increased

Fig. 5. BranchyNet for efficient end-edge-cloud progressive co-inference.

computational time and energy consumption during inference.
In view of this, Teerapittayanon et al. [84] proposed a novel
open-source deep neural network (DNN) framework known
as BranchyNet, which incorporates early exit mechanisms
through side or exit branches. As shown in Figure 5, these
branches, such as Exit 1 and Exit 2, seamlessly integrate with
the original baseline neural network, enabling a significant pro-
portion of input samples to exit the network via these branches.
This design can be used to meet the real-time and energy-
efficiency requirements of various applications. Specifically,
BranchyNet enables early exit of inference samples from the
network through designated branches such as Exit 1, when
specific predetermined criteria such as confidence thresholds
are met. In cases where these preset requirements are not
satisfied, additional layers or deeper branches such as Exit
2 or Exit 3 can be utilized to make a final determination.

- End-edge-cloud progressive co-inference mechanism
leveraging early exit. Early exit is a general technique and
applicable to various types of DLMs, such as graph neural net-
work (GNN) [85] and deep CNN [86]. It forms a fundamental
component of the end-edge-cloud progressive co-inference, as
shown in Figure 5. In this framework, a shallow DLM branch
is deployed on the end (edge) node to facilitate real-time
inference. When necessary (such as for fusing distributed end
or edge node information or enhancing inference confidence),
intermediate data (such as feature vectors generated by the
end (edge)-DLM branch) can be transmitted to a deeper DLM
branch residing on the edge (cloud) node for further inference.
For example, Teerapittayanon et al. [87] proposed distributed
DNNs over distributed end-edge-cloud computing hierarchies.
It introduced end and edge DNN branches (actually some
shallow portions of the DNN) with local exit points which
may classify samples with high confidence locally and quickly
at the end and edge devices. If necessary, the output data of
the shallow DNN portions will be offloaded to the edge or the
cloud for additional processing using the higher layers of the
DNN.

In a broader context, the deployment of DLMs across end-
edge-cloud nodes encompasses not only diverse branches of
DLMs [87] but also varying scales of DLMs. Specifically,
the cloud-based DLM can represent the large-scale DLM,
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while the DLM on the end or edge node can be achieved
through model compression and lightweight techniques, such
as parameter quantization [88], [89], neural network pruning
[90], and knowledge distillation [7]. For example, Ren et al.
[91] designed a lightweight temporal convolutional network
for real-time predictions of industrial equipment’s remaining
useful life on the edge plane, while a large-scale temporal
convolutional network on the cloud is used to provide more
accurate predictions based on historical data. Yang et al. [92]
proposed an end-edge collaborative fault diagnosis framework.
A tiny stacked auto-encoder model is designed to operate on
the end micro-controller unit for real-time decision-making,
while a larger DLM is utilized on the edge node for dynamic
adaptive diagnosis, thereby enhancing end inference perfor-
mance. DeepAdapter [90] introduced the integration of a cloud
server to build an end-edge-cloud co-inference framework
for cross-platform Web applications. In the online inference
process of DeepAdapter, the terminal cross-platform Web ap-
plication initially conducts rapid inference using pruned CNN.
If the initial inference fails to meet accuracy requirements,
the intermediate data generated from the first convolutional
layer is transmitted to the edge for a second inference using
unpruned CNN. Additionally, when the edge experiences a
high volume of concurrent requests from the terminal Web
application, certain inference tasks can be offloaded to the
cloud to ensure fast and real-time decision-making.

Furthermore, the combination of model compression and
early exit techniques offers the potential for achieving higher
compression ratios and greater flexibility in deploying DLMs
on the end or edge nodes. For example, Huang et al. [88], [89]
proposed an end-edge collaborative system for mobile Web
applications. In this setup, a full-precision DNN is deployed
on the edge server, while a binary DNN with branches is
deployed on the mobile device. When the inference accuracy
of all branches fails to meet the requirements, the intermediate
output of the binary DNN is transmitted to the edge server for a
more accurate inference, thus ensuring both inference accuracy
and privacy for mobile users. Details of model compression
techniques are elaborated in Section IV.

The end-edge-cloud progressive co-inference framework
possesses the flexibility for both horizontal and vertical scal-
ing. (i) Vertical scaling involves the dynamic coordination
and integration of computing nodes across different layers
within the end-edge-cloud architecture, including end-cloud,
edge-cloud, end-edge, and end-edge-cloud collaboration. (ii)
Horizontal scaling entails the addition of more end (edge)
nodes dedicated to a specific task, with a subsequent fusion
of their inference results using various strategies such as
voting and weighting to realize a joint inference. If the joint
inference outcome fails to meet predefined criteria, each node
can transmit intermediate data to the upper layer for feature
aggregation using feature fusion techniques such as weighting,
concatenation, or tensor-product. The larger-scale DLM at
the upper layer then takes the aggregated features as input,
resulting in a more accurate and seamless inference.

- Exit criteria for end-edge-cloud progressive co-
inference. The essence of the end-edge-cloud progressive
inference mechanism lies in determining when to exit from

the current computing node. Existing exit strategies include
rule-based strategies and learning-based strategies.

Rule-based strategies rely on predefined rules or heuristics
to determine when an early exit should occur. These rules are
often made based on factors such as inference confidence, time
constraints, and resource limitations. A prevalent practice is
confidence threshold which involves comparing the inference
confidence that is derived from a given input with a threshold
denoted as t. The threshold is utilized to strike a trade-off
between the latency and accuracy of the DLM. Fang et al.
[86] and Laskaridis et al. [93] used the Top-1 output value
from a CNN’s softmax layer to estimate inference confidence.
In general, higher Top-1 output values are associated with
increased accuracies. However, these values can exhibit sig-
nificant variations across different inputs, posing challenges in
selecting an appropriate threshold.

In information theory, entropy serves as a measure of the
average information or uncertainty within a random variable.
Lower entropy values correspond to reduced uncertainty in
a random variable such as the output vector, which can be
used to measure inference confidence. BranchyNet [84] used
unnormalized entropy as a metric for inference confidence,
defined as follows.

entropy(x) =


c∈C

xc log xc (1)

where C represents the set of all possible labels, and x denotes
the probability vector. DeeCap [94] calculated the entropy of
the output distribution at the decoder layer as the confidence.
A smaller entropy value indicates greater confidence in the
inference results of the DLM. To facilitate comparisons and
enhance interpretability, normalized entropy [87]–[90] is often
used as follows.

η (x) = −
|C|

i=1

xi log xi

log |C| (2)

where η has a value between 0 and 1. The entropy threshold
method is commonly employed in the field of CNN-based
networks. However, this method may not apply to certain tasks
like regression.

The selection of the threshold value t depends on various
factors, including the dataset, the specific DLM, and the
application requirements. The threshold must be selected to
make a trade-off between inference latency and accuracy
requirements. A straightforward approach involves searching
for an optimal t value across multiple randomly selected test
sets [84], [86]–[89]. However, in some cases, the threshold is
not static but should be dynamically adjusted according to the
model’s practical performance. This approach has its limita-
tions and does not automatically yield the optimal threshold,
especially in situations where end-edge-cloud communication
is unstable.

In addition, early exiting rules might be set manually
based on engineering experience or business requirements.
For example, in real-time processing or resource-constrained
applications, the decision to exit early might be made based



MANUSCRIPT FOR IEEE COMMUNICATIONS SURVEYS & TUTORIALS 12

on artificially imposed time or computational resource con-
straints. If the processing time or consumed resources exceed
a predetermined limit, the model might be forced to exit early
even if the inference confidence level has not reached the set
threshold. This method is easy to implement and well-suited
for (industrial) scenarios with stringent constraints.

Learning-based strategies use data-driven approaches to
determine the exit points. On the one hand, possible exit
points can be predicted before inference. It is feasible to use
prediction algorithms, such as regression models and multi-
layer perceptrons, to predict the optimal exit point based on the
estimation of the input data’s features. For example, Li et al.
[95] proposed a predictive exit framework capable of forecast-
ing where the network will exit, enhancing computation and
energy efficiency in DL applications. On the other hand, it is
possible to predict if a given sample will be correctly inferred
at a specific exit point during the inference process, often by
incorporating additional learn-to-exit modules in the training
process. For example, Ghodrati et al. [96] used a multi-
layer perceptron at each exiting point to determine whether
the partially observed clip contains sufficient information to
accurately classify the entire video. Xin et al. [97] proposed
a learning-to-exit module, a simple one-layer fully-connected
network, to predict the certainty level for a given input.

Rule-based strategies are easy to implement and can be
highly effective in scenarios where the criteria for good
inference are well-understood and consistent. However, rule-
based strategies suffer from issues with generalization and
threshold tuning, and may not always adapt well to varying
data distributions or complex scenarios. For example, the
confidence threshold method necessitates careful tuning of
the hyperparameter t, which varies widely across different
applications and datasets. Learning-based strategies are partic-
ularly relevant to pattern recognition problems. It can deal with
uncertain situations such as exceptional samples and changing
communication and computing environments, without the need
for threshold-tuning. Consequently, it is a more promising way.
However, it introduces additional computational costs, which
may pose challenges for end devices with limited resources.
Therefore, it is crucial to explore more efficient exit methods
and strategies further. For example, Sun et al. [98] used hash
functions to replace the learn-to-exit module and assign each
token to a fixed exiting layer in BERT.

- Training end-edge-cloud DLMs. Like the training pro-
cess for BranchyNet, a joint training method can be applied to
train DLMs within the end-edge-cloud architecture. This joint
training approach aims to minimize the weighted sum of the
loss functions of DLMs distributed across various end-edge-
cloud nodes, ensuring that each DLM or exit branch attains
high accuracy commensurate with its network depth and scale
[84], [99]. For example, when using the softmax cross-entropy
loss function as the optimization objective, the loss function
for each decision exit point that is applicable for cloud-DLM,
edge-DLM, and end-DLM is defined as follows.

L (ŷ, y; θ) = − 1

|C|


c∈C

yc log ŷc (3)

ŷ = softmax (z) =
exp (z)

c∈C exp (zc)
(4)

z = fexitn (x; θ) (5)

where y represents a one-hot ground-truth label vector, x
denotes an input sample, with C representing the set of all
possible labels. The function fexitn represents the computation
of neural network layers from an entry point to the n-th exit
branch, and θ denotes the network parameters, such as weights
and biases for those layers. The objective during joint training
is to minimize a weighted sum of the loss functions associated
with each exit, as follows.

L (ŷ, y; θ) =

N

n=1

wnL(ŷexitn , y; θ) (6)

where N represents the total number of exit points and wn

denotes the associated weight of each exit. Equal weight wn =
1/N is used in [87].

Joint training aids in learning more robust feature represen-
tations at different scale levels of the network and ensures that
both the main network and the auxiliary branches are effec-
tively trained. However, it also presents challenges including
increased training complexity and resource demands, difficulty
in hyperparameter tuning, and the risk of overfitting.

- Updating end-edge-cloud DLMs. To update the end-
edge-cloud DLMs, various update modes can be employed,
including centralized, decentralized, and end-edge-cloud col-
laborative approaches. (i) Centralized update involves the
retraining of the entire DLM or specific model components
(updating only relevant parameters) using a new dataset on a
central computing server. This approach effectively leverages
the computational capabilities of the central server. However,
it necessitates the transmission of raw data to the remote
server, giving rise to concerns related to data privacy and
service latency. (ii) Local update involves the retraining of end-
edge-cloud DLMs locally using newly generated data. This
approach allows for rapid model updates without the need
for transmitting raw data, enabling personalized adaptation to
specific task requirements. However, as the dataset collected
at an individual end or edge node is usually small in size, local
updates may introduce challenges related to generalization and
model robustness. (iii) End-edge-cloud collaborative update
methods employ knowledge transfer approaches to train end
or edge DLMs with assistance from cloud-DLM, as described
in Section III-C.

2) End-edge-cloud distributed co-inference based on model
segments: The core idea of model-distributed co-inference
across the end-edge-cloud infrastructure is similar to model
parallelism-based co-training. It involves the segmentation
and deployment of a DLM across different end-edge-cloud
computing nodes and relies on the collaboration of these dis-
tributed segments for inference. This partitioning of the DLM
dramatically reduces the computational resource requirements
for each segment, enabling the execution of large-scale DLMs
on multiple resource-constrained computing devices. The most
suitable model partitioning strategy depends on several factors,
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including the type and internal structure of the DLM (such
as layer type, feature map shape, and filter size) and the
external environment, encompassing computing and network
resources [100], [101]. Just like model parallelism-based co-
training as shown in Figure 4, DLM partitioning methods for
distributed inference can be categorized into two types: layer-
level distributed co-inference and neuron-level distributed co-
inference.

- Layer-level distributed co-inference. It involves dividing
the DLM at the granularity of layers and distributing these
segments to the various end-edge-cloud nodes for pipelined
co-inference, such as JointDNN [102] for end-cloud collab-
oration, BBNet [103] for edge-cloud collaboration, Cogent
[104] for end-edge collaboration, and DeepX [105] for end-
end collaboration. A practical example is Taobao’s EdgeRec
recommendation system [42], where a portion of the DLM
containing embedding matrices that consume a large amount
of storage resources (approximately 230MB) is deployed in the
cloud. Meanwhile, the remaining parts of the model without
embedding layers are deployed to end mobile devices and
utilize embedding features from the cloud as input for model
inference. Another case is Auto-Split [12] which has been
used to realize end-cloud collaborative inference for machine
vision. In a vehicle recognition system, Auto-Split divides the
YOLOv3 model into end-DNN and cloud-DNN components.
The terminal camera runs end-DNN and uploads the output
data to the cloud, which then executes cloud-DNN and a
long short-term memory model for license plate recognition.
Finally, the results are returned to the terminal camera. The
technical details of Layer-level partition are elaborated in
Section V-A.

In layer-level distributed co-inference, the incorporation of
early exit or model compression techniques can further reduce
model size and execution latency. For example, Boomerang
[106], an on-demand cooperative DNN inference framework in
the IoT environment, uses the early exit mechanism and layer-
level partitioning to achieve low latency and high accuracy
inference. Edgent [107], [108] is an on-demand end-edge
collaboration framework. It models the delay and energy
consumption of each layer within the DNN to determine the
optimal partition point. Then the DNN is divided and deployed
to the end device and the edge server, allowing the end-DNN
to exit early based on delay and accuracy requirements.

- Neuron-level distributed co-inference. It involves the
segmentation of neurons such as weight matrix, filters, and
convolution kernels into distinct parts along specific dimen-
sions and calculating them separately on different end-edge-
cloud nodes, such as MoDNN [109] for end-end collaboration
and DeepThings [110] for edge-edge collaboration. Depending
on the dimensionality of the division, neuron-level partitioning
can be further categorized into two subtypes: channel partition
and space partition, as elaborated in Section V-B.

Regarding the training and updating of partitioned DLMs,
while distributed training methods are available, they are often
deemed uneconomical for end-edge-cloud communication sys-
tems, due to the substantial volume of parameters and frequent
transmission of intermediate data during the training process.
Therefore, current research mainly adopted centralized training

methods, in which the DLM is trained and updated on a
high-performance server before being partitioned and deployed
across the end-edge-cloud nodes.

C. End-Edge-Cloud Collaborative Updating

While Section III-A primarily focuses on end-edge-cloud
distributed training for a single model, this section delves
into the co-updating approach of multiple DLMs within the
end-edge-cloud framework, primarily accomplished through
knowledge transfer technologies.

1) Motivation: In practical applications, a common chal-
lenge arises from disparities between the distribution of the
training set and the test set for DL. DLMs after deployment
may not be suitable for a dynamic and constantly evolving
world. This necessitates that DLMs possess the capability
for lifelong learning and self-adaptation to address changing
environments through updates or adaptation. A straightforward
approach involves retraining or incrementally training the orig-
inal DLM locally. However, there may be a lack of sufficient
domain data to train a high-performance model, leading to
overfitting and poor generalization capabilities. For example,
in bearing fault diagnosis, obtaining fault samples can be a
challenging endeavor [92]. On the other hand, this approach
is inefficient as training a large DLM usually requires a lot of
computing resources and time. To address these issues, sharing
knowledge among different DLMs to achieve lifelong learning
and domain adaptation emerges as an effective strategy, due
to the following advantages.

- Learning with limited data. Knowledge acquired from
a source domain can be instrumental in facilitating feature
extraction and learning processes in a target domain where
amassing a substantial volume of training data is often cost-
prohibitive, time-intensive, or at times, impractical. For exam-
ple, transfer learning technology aims to leverage knowledge
from related tasks to solve new tasks with little or even no
additional labeled training data.

- Improving model performance. Knowledge sharing al-
lows a model to acquire valuable guidance and experiences,
such as feature representations, model structure, and layer
relationships, from other domain data and models, expediting
convergence and learning. This shared knowledge can enhance
the learning capabilities of related models, often leading to
improved model performance, including accuracy, efficiency,
robustness, and generalization. For example, knowledge dis-
tillation technology can empower student DLMs to acquire
insights about robustness and resilience from a teacher DLM.
This equips models to better adapt to challenging scenarios
such as noise, interference, and adversarial attacks.

- Effective adaptation. Knowledge learned from one DLM
can be effectively repurposed to swiftly develop and tailor
models for downstream or personalized domain applications,
eliminating the necessity of training these models entirely
from scratch. For example, pre-trained foundation models are
trained on massive, diverse, and unlabeled datasets, typically
through self-supervised learning, and can be fine-tuned to
numerous downstream tasks, reducing training time and the
computational resources required.
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Fig. 6. The schematic illustrations of knowledge that can be shared among
end-edge-cloud nodes.

Given the compelling advantages of knowledge sharing, we
integrate it into the cloud edge-end architecture to propose the
concept of end-edge-cloud co-updating (learning), which will
be elaborated upon in the subsequent section.

2) Categorization of end-edge-cloud co-updating: As
shown in Figure 6, shared knowledge can encompass instance
knowledge, data representation knowledge, data relational
knowledge, and model knowledge including feature knowl-
edge such as intermediate and output feature, model structure
knowledge, and model relational knowledge. These forms of
knowledge are shared through knowledge transfer techniques,
such as transfer learning and knowledge distillation.

- Instance, data representation and data relational
knowledge-based end-edge-cloud co-updating. These ap-
proaches involve the transfer of instance knowledge, data
representation knowledge, and data relational knowledge [111]
obtained from data of an end-edge-cloud node (referred to as
the source domain in transfer learning, where labeled data
is abundant) to train another node’s DLM (known as the
target domain task in transfer learning, where the labeled
data is limited or the problem is different but related to the
source domain). The realization of these approaches primarily
relies on transfer learning techniques which will be discussed
in Section VI-A, and the meaning of the above knowledge
is as follows. (i) Instance knowledge assumes that certain
labeled data from the source domain can be reused, such as
through reweighting, to aid learning in the target domain. (ii)
Data representation knowledge pertains to the common feature
subspace shared by data in both the source and target domains.
In transfer learning, the original features are transformed to
obtain a common feature representation. (iii) Data relational
knowledge involves the relations and rules among the data
in the source domain. For example, techniques like angular
and distance relationships [112], similarity and correlation
[113], and similarity-preserving [114] are utilized to assess
relationships between sample data during the training process.

- Feature knowledge-based end-edge-cloud co-updating.
Feature knowledge comprises abstract features, including out-
put features and intermediate features, acquired by DLMs
processing sample data. By emulating the feature knowledge
of other DLMs (referred to as the teacher model in knowledge

distillation) on end-edge-cloud nodes, the local DLM (termed
the student model in knowledge distillation) can be trained
and updated, serving the purposes of model compression or
performance enhancement.

(i) Output feature knowledge relates to the data derived
from the last hidden layer or the output layer of the DLM,
such as logical units before a softmax activation layer in
classification tasks [111], or soft targets which obtained from
the softmax layer represent class probabilities. In the extreme
case, the inference result of the model can also be considered
as the output feature knowledge. For example, in study [43],
CloudCNN located on the cloud is used to predict labels
of the uploaded data from end devices and transmit labels
to the edge servers. Thus, EdgeCNN can be retrained with
those labeled data, which effectively complements the edge
training dataset. Output feature knowledge is widely used
in the knowledge distillation process. However, the output
feature knowledge from the teacher model primarily guides
the training of the deep layers of the student model, rather than
the shallow layer responsible for feature extraction [115]. The
information capacity of hidden layers in the complex teacher
model significantly differs from that of the simpler student
model, leading to varying feature representation capabilities.
Consequently, output feature knowledge alone may not suffice
to guide the training of the student model.

(ii) Intermediate feature knowledge relates to the features
extracted from the hidden layers of the teacher model and
can serve as valuable hints for the corresponding hidden
layers in the student model, prompting the student model to
generate similar intermediate representations. For example,
FitNets [116] enabled the training of a thinner yet deeper
student model by leveraging the outputs and intermediate
representations learned by the teacher model, to enhance
the performance of the student model. Studies [117], [118]
demonstrated the value of the student model learning critical
intermediate features from the teacher model.

- Model relational knowledge based end-edge-cloud co-
updating. Model relational knowledge involves logical rela-
tions and rules between model layers or weight parameters.
Various techniques are employed to measure these relations,
such as the flow of solution process matrix [119], Jacobian
matrix [120], graph-based knowledge [121] and information
flow [122] for measuring the relation between DLM layers.
These model relational knowledge can guide other models for
training.

- Structured knowledge-based end-edge-cloud co-
updating. Structured knowledge refers to structured and stan-
dardized information that can be easily documented and trans-
ferred, typically involving parameters or prior distributions of
DLM hyperparameters such as learning rates. For example,
specific layers of the Cloud-DLM can be directly incorporated
into the End-DLMs and Edge-DLMs, as shown in Figure 7.
There are 5 and 3 convolutional layers in the Edge-DLM
and End-DLM originating from the Cloud-DLM. In the Edge-
DLM and End-DLM training processes, these shared layers are
frozen with only the remaining layers being updated to achieve
fast convergence. Furthermore, domain adaptation of the pre-
trained foundation model to downstream tasks is another
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typical example of structural knowledge transfer, which can be
realized through fine-tuning, prompt tuning, instruction tuning,
etc.

In practical applications, the sharing of structured knowl-
edge in the end-edge-cloud environment has been widely
studied. For example, Lu et al. [123] proposed a model
parameter-sharing approach in their edge-cloud collaborative
learning method, COLLA, for user behavior prediction. Here,
model parameters from a cloud-trained model which uses
historical data, are distributed to edge devices. Each edge
device conducts incremental learning using local data to build
a personalized edge model. The cloud model acts as an
aggregator, consolidating knowledge (model parameters) from
multiple edge models and sharing these parameters with edge
devices to alleviate overfitting issues arising from limited local
data. Ding et al. [43] proposed an edge-cloud collaboration
framework for cognitive services. They deployed a shallow
model (EdgeCNN) on the edge server to deliver prompt
cognitive services and a deep model (CloudCNN) on the
cloud server to enhance the performance of the EdgeCNN
by sharing predicted labels, model structure and parameters.
The experimental results showed that EdgeCNN reduced the
average response time of cognitive services by up to 55.08%
and improved accuracy by up to 26.70% within the edge-
cloud collaboration framework. Jing et al. [124] designed an
edge-cloud collaboration framework for predicting the remain-
ing useful life of machinery. In this framework, the cloud
prediction engine (Cloud-PE) with a built-in deep prediction
DLM is encapsulated in the cloud service layer, while the
edge prediction engine (Edge-PE) equipped with a shallow
prediction DLM is positioned in the edge service layer. Cloud-
PE plays a pivotal role in assisting Edge-PE to achieve fast
and highly accurate predictions by providing soft supervision
and sharing depth model parameters. Experimental results
show that the edge-cloud collaboration framework yields more
accurate predictions and reduces the training time of the edge
model compared to existing data-driven prediction methods.

3) Federated continual learning: FL involves distributed
training across multiple heterogeneous devices without sharing
private local data. It is a commonly used knowledge transfer
strategy in the end-edge-cloud architecture. Standard FL, even
personalized FL follows a static configuration, where the local
data and task don’t change over time. However, in realistic
tasks, it is common to collect data progressively while the
training goes on, and can be required to learn new tasks over
time. Recently, some interesting studies have been devoted to
exploring federated continual learning (FCL) which assumes
that the learned tasks change over time, where multiple clients
Cc ∈ {C1, C2, · · · , Cc} are continuously trained on a se-
quence of tasks {T 1

c , T
2
c , · · · , T t

c} from the private data stream
while communicating the learned parameters or knowledge
with a global model.

On the one hand, some FCL methods make use of the
parameter isolation strategy and try to distinguish old knowl-
edge from new knowledge from the perspective of parameters.
FedWeIT [125] decomposed the network weights into global
federated parameters and task-specific parameters which in-
clude local base parameters and task-adaptive parameters.

Each client Cc ∈ {C1, C2, · · · , Cc} receives selective knowl-
edge from other clients by taking a weighted combination
of their task-specific parameters. In FedWeIT, a set of the
model parameters θ

(t)
c for task t at client c is defined as
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c is the
set of a sparse task-adaptive parameters at client c, α(t)

i,j is the
weight. Dong et al. [126] developed a global-local forgetting
compensation model to alleviate the catastrophic forgetting in
FL, which employs a class-aware gradient compensated loss
and a class-semantic linkage distillation loss to equalize the
gradient propagation and guarantee stable inter-class relations
across tasks. Le et al. [127] presented an FCL scheme based
on broad learning, where a weighted processing strategy is
proposed to solve the catastrophic forgetting problem and a
local-independent training solution is proposed to support fast
and accurate training.

On the other hand, some studies try to conduct FCL from the
perspective of knowledge distillation and extraction. For ex-
ample, Ma et al. [128] proposed continual FL with distillation,
which performs knowledge distillation on both the clients and
the server, with each party independently having an unlabeled
surrogate dataset and different learning objectives such as
learning the new task and reviewing old tasks. FedKnow [129]
is a client-side FCL framework composed of a knowledge
extractor, a gradient restorer, and a gradient integrator that
combines signature tasks identified from past local tasks and
other clients’ current tasks through the global model.

However, these approaches ignore the maintenance or con-
solidation of old knowledge, which will inevitably lead to
a degradation in the performance of the model on previous
tasks due to the probabilistic bias problem [130]. On the
other hand, these approaches ignore asynchronous learning
[131] where the continual learning of multiple tasks happens
at each client with different orderings and in asynchronous
time slots. The asynchronous nature of each client’s learning
can lead to an imbalance in parameter variations. Although
Wang et al. [130] proposed a federated probability memory
recall framework to mitigate the probability bias problem and
the imbalance in parameter variations, and Shenaj et al. [131]
considered an asynchronous FL setting, there is still a large
space to improve for existing FCL approaches. Meanwhile,
efficiency and communication overhead are also the key issues
of FCL. In addition to data replay strategies, efficient and
secure communication strategies need to be further explored.
For example, Zhang et al. [132] proposed the bidirectional
compression and error compensation algorithm to produce the
communication-efficient FCL method.

D. Summary and Lessons Learned
In this section, we derive a holistic taxonomy for the end-

edge-cloud collaborative learning, including end-edge-cloud
co-training, co-inference, and co-updating throughout the en-
tire DL lifecycle. The summary and lessons learned are as
follows.
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Fig. 7. Structure knowledge sharing between Cloud-DLM and End-/Edge-DLM.

1) Heterogeneous end-edge-cloud co-training: End-edge-
cloud co-training draws inspiration from traditional distributed
training, particularly FL. However, it grapples with a more
intricate computing environment. This complexity arises from
several sources: (i) Heterogeneous end-edge-cloud computing
devices, which exhibit heterogeneity in storage, computing
power, and communication capabilities even within the same
end, edge, or cloud layer. (ii) Heterogeneous Data, character-
ized by differences in quantity, quality, and distribution across
computing nodes, especially Non-IID data. (iii) Heterogeneous
models, each tailored to specific application scenarios on end-
edge-cloud nodes. To address the challenge of device hetero-
geneity, it is crucial to optimize both the architectural and
mechanistic aspects of data parallelism and model parallelism.
When dealing with data and model heterogeneity, strategies
such as personalized FL, user context, transfer learning, meta-
learning, knowledge distillation, and multi-task learning could
be considered.

2) Dynamic end-edge-cloud co-inference: Co-inference,
unlike co-training, does not entail backward computation,
which simplifies its deployment in practical applications. How-
ever, the heterogeneity and dynamics of the end-edge-cloud
devices and networks remain significant challenges. Selecting
the optimal co-inference framework for each service quality
can be a daunting task. Therefore, on the one hand, the
performance and service improvements brought by end-edge-
cloud co-inference, such as delay, energy consumption and
robustness should be quantitatively evaluated, and the trade-
offs between different indicators should be carefully consid-
ered. On the other hand, advanced co-inference mechanisms,
such as early exiting and model partitioning and cooperation,
should be explored to cope with complex end-edge-cloud
environments.

3) Knowledge-based end-edge-cloud co-updating: In a dy-
namic application environment, DLMs need continuous updat-
ing to achieve lifelong learning and personalization. To allevi-
ate the challenges associated with model updating, knowledge-
sharing within the end-edge-cloud framework emerges as a
valuable approach. However, due to interpretability issues in
DL, what knowledge is reasonable and efficient to share is not
always supported by theoretical analysis. Moreover, hetero-
geneity in data, devices, and models complicates knowledge-
sharing mechanisms. Therefore, on the one hand, we need to
quantify performance improvements from knowledge sharing
and strengthen the exploration of interpretability theory in DL.
On the other hand, we still need to explore the knowledge-
sharing mechanism of end-edge-cloud co-updating to adapt to
heterogeneous environments.

4) Future trend: Advanced pre-trained foundation models
such as ChatGPT and PanGu have gained significant attention
due to their unprecedented ability to capture rich knowledge
from large-scale pretraining data, which gives large models
the potential to serve as universal experts or domain experts
through fine-tuning. However, large-scale deployment of foun-
dation models still faces challenges including personalization,
computing power, and efficiency. To address these challenges,
one promising deployment scheme is large and small model
collaboration in end-edge-cloud computing power network
(CPN). On the one hand, the synergy between these two
distinct DL paradigms results in a more responsive, efficient,
and adaptable DL ecosystem. On the other hand, the CPN
that converges end-edge-cloud computing and networks can
flexibly allocate computing resources on demand to meet
the anytime and anywhere computing requirements of DL
systems. Therefore, the convergence of large and small model
collaboration and CPN is a novel and inevitable paradigm after
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the convergence of DL and end-edge-cloud computing.

IV. MODEL COMPRESSION TECHNOLOGIES FOR DEEP
LEARNING

End-edge-cloud collaborative learning necessitates the de-
ployment of a complete or at least a portion of the DLM on
end and edge nodes that are close to the data source. However,
the inherent limitation of computational resources on these end
and edge nodes calls for the adoption of model compression
techniques. Popular DL model compression techniques include
pruning and sparsification, parameter sharing and quantization,
manual design of lightweight networks, and neural network
architecture search.

A. Pruning and Sparsification of Neural Networks

A common method for compressing neural networks is
weight pruning (unstructured pruning), which aims to remove
“redundant” weight parameters in the network. However, this
often leads to irregular, sparse weight matrices, which rely
on indices for storage, making them less compatible with the
data parallel execution model by GPUs and multicore CPUs.
To overcome such limitations, recent studies proposed the
idea of structured pruning, which incorporates regularity or
structures in weight pruning, i.e., weight matrix’s row pruning,
filter pruning, and self-attention matrices pruning. Structured
pruning, while coarser in granularity and still containing
some redundant weights, maintains a full matrix with reduced
dimensions, making it more suitable for general-purpose GPUs
or multicore CPUs. Whether employing structured or unstruc-
tured pruning, the ultimate goal is to remove the defined
unimportant portions of the network. According to the pruning
operation stage, existing pruning strategies can be divided into
pruning at initialization and pruning after training.

1) - Pruning after training: Pruning after training follows
the training-pruning-retraining (fine-tuning) methodology. Ini-
tially, the DLM is trained, after which the importance of
parameters or nodes in the neural network is evaluated, and
redundant ones are pruned. Subsequently, the network is
retrained or fine-tuned. The above process is iterated until the
model converges. This approach is widely used in existing
pruning algorithms, as detailed in recent review literature
[133]–[136], However, pruning-after-training approaches are
less efficient in terms of learning, as the iterative pruning and
retraining (fine-tuning) processes consume considerable time
and computational resources to obtain the desired DLM.

2) - Pruning at initialization: In contrast to pruning af-
ter training, pruning at initialization aims to sparsify neural
networks during the random initialization stage. A traditional
way to obtain sparse DLMs involves incorporating sparse
constraints during DLM training, such as using sparse rep-
resentation, sparse cost functions, and sparse regularization
[137]. While this method has the advantage of not requiring
extensive time and computational resources for pre-training the
model, it typically results in low sparsification rates and the
neural network cannot be compressed significantly. The recent
lottery hypothesis [138], [139] challenges the belief that large
neural networks are necessary for achieving high performance.

This hypothesis suggests the existence of a sparse network
within a larger neural network, with comparable performance
to the original network. The concept of “mask” is introduced
to identify this winning network. The steps are as follows.

Step 1: Randomly initialize the parameters of the original
neural network to obtain f (x,w0), where x represents the
input data and w0 is the network parameter;

Step 2: Train the original neural network j times to acquire
wj ;

Step 3: Set a corresponding binary mask m for each
parameter, with values of 1 and 0;

Step 4: Set a threshold value based on the desired pruning
ratio. Assign a value of 0 to parameters whose absolute value
is less than the threshold and set their corresponding masks
to 0. Reset parameters with absolute values greater than the
threshold to the parameter value w0 (before training) and
assign a mask value of 1.

Following these steps, the sparsely initialized network
f (x,m⊙ w0) can be obtained. Various methods or algorithms
have been developed to identify sparse networks within ran-
domly initialized neural networks, including supermask [140]
and edge-popup algorithm [141], which are detailed in the
review literature [142]. It is worth noting that most studies
focus on unstructured pruning rather than structured pruning.

Overall, neural network pruning after training typically
removes redundant parameters or neurons from a trained
model, while pruning at initialization aims to prune a randomly
initialized model. Although pruning at initialization is an
interesting idea, it is inferior to the pruning after training
method in terms of practical performance. On the one hand,
it does not bring much change to the pruning ratio, criterion,
and schedule [142], for example, many pruning criteria used in
pruning-at-initialization approaches resemble those in pruning-
after-training approaches. This results in the same, or even
worse performance of the final pruned models, even with
different pruning methods. On the other hand, most pruning at
initialization studies focus on unstructured pruning rather than
structured pruning, leading to the inability to obtain efficient
training acceleration due to the lack of sparse training library
support. Furthermore, dynamic-mask approaches exacerbate
this issue compared to static-mask approaches, as their variable
masks hinder hardware acceleration.

B. Parameter Sharing and Quantization of Neural Networks

Parameter sharing and quantization represent an impor-
tant compression method, aimed at efficiently mapping DLM
parameters to a smaller amount of data. Common methods
include parameter clustering, hash sharing, parameter quanti-
zation, etc.

1) Parameter clustering: This method achieves parameter
sharing by clustering methods such as k-means clustering. It
assigns the same index to similar parameters within a pre-
trained DLM and uses specific statistic indicators like the mean
value, of the index to represent this type of parameter [143],
[144].

2) Hash sharing: It uses hash functions to facilitate pa-
rameter sharing. For example, Chen et al. [145] introduced a
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low-cost hash function that groups weights into hash buckets
to enable parameter sharing. One advantage of this approach
is that it does not necessitate pre-training the DLM. Moreover,
the shared parameter vector can be initialized in the same way
as the normal model parameter initialization, and the DLM
based on hash-sharing can be trained conventionally.

3) Parameter quantization: It entails reducing the precision
of the floating-point representation used for the parameters
(weights and activations) of the network to conserve storage
and computation resources, for example, converting 32-bit
floating point into low-precision data types such as 8-bit or
4-bit integer. In typical cases such as binary neural networks
[146], [147], floating-point weights are replaced with binary
representations. As a result, a model that originally used
32-bit floating-point representation can be compressed by a
factor of 32 to suit resource-constrained end devices and edge
nodes. However, parameter quantization causes information
loss and introduces discontinuities that can complicate DLM
optimization, leading to a significant drop in model accuracy
[148]. Therefore, the trade-off between data bit width and
model accuracy is a crucial issue. Quantization bit width
was traditionally determined through manual experimentation
[149], [150]. Khoram et al. [151] proposed an adaptive method
for determining the quantization bit width of each parameter
based on the gradient of the corresponding loss function. Sev-
eral studies [152]–[154] have emerged to support the adaptive
determination of the optimal quantization bit width based on
the specific task environment. Moreover, to minimize accuracy
loss due to quantization, Yu et al. [155] introduced compres-
sion methods that use convolutional kernels as quantization
units. Zhou et al. [156] proposed incremental quantization
methods that map weights of trained CNNs to bits in the form
of exponential powers of 2, facilitating model computation
through binary shift operations.

Overall, (i) parameter clustering groups similar parame-
ters together, which can significantly reduce the model size.
However, it may lead to a loss of fine-grained information,
potentially affecting model performance. (ii) Hash sharing
uses a hash function to group parameters. This approach can
efficiently reduce memory requirements but might introduce
hash collisions, where different parameters are erroneously
mapped to the same representation, leading to potential per-
formance degradation. (iii) Parameter quantization reduces the
precision of the parameters, converting them from floating-
point to lower-bit representations. This method dramatically
decreases model size and can speed up inference by leveraging
integer arithmetic. However, aggressive quantization can lead
to a significant loss in model accuracy due to the reduced
precision. Therefore, they must be carefully implemented to
balance the trade-off between model size, inference speed, and
accuracy.

C. Manual Design of Lightweight Networks and Neural Ar-
chitecture Search

1) Manual design of lightweight networks: Some studies
focus on crafting efficient lightweight modules and networks
also with the purpose of network optimization, such as the

fire module [157], Xception module [158], depthwise convo-
lution module [19], inverted residual with linear bottleneck
[159], and squeeze-and-excitation module [160]. Designing
lightweight networks manually necessitates considering var-
ious factors such as inter-layer connections, DNN depth, and
the computational setting of convolutional layers, the need
to continuously adjust network structures according to model
performance. Effective design relies on extensive designers’
expertise, domain knowledge, experience, and intuition. How-
ever, experience and intuition-based manual design does not
guarantee optimality for the target task, and it is impractical to
manually search the large solution space for the optimal one.

2) Neural architecture search: In contrast, neural archi-
tecture search (NAS) [161] similar to hyper-parameter op-
timization in machine learning, automates the exploration
and design of neural network architectures to achieve peak
performance for a specific task. NAS techniques consist of
three main components: the search space, search strategy,
and performance evaluation. NAS-based lightweight network
design aims to obtain lightweight network structures through
NAS technology.

- Indirect search. One approach is to use existing
lightweight neural network structures as a framework and then
fine-tune the network using NAS. For example, ProxylessNAS
[162], MDENAS [163], MNasNet [164], MobileNet-V3 [160],
FB-Net [165], ChamNet [166], EfficientNet [167] and FB-Net-
V2 [168] all build upon the MobileNetV2 as the basis for their
search and adjustments. The search space for MobileNet cells
mainly includes the type of separable convolution, the type
of skip connections, channel count, convolutional kernel size,
expansion ratio, and layer count.

- Direct search. An alternative method involves directly
searching for lightweight network structures. In [169], bina-
rized NAS, with a search space consisting of binarized con-
volutions, is introduced to partially connected differentiable
architecture search to produce highly compressed models.
Chen et al. [170] introduced channel sampling and operation
space reduction into a differentiable NAS to significantly
reduce the cost of searching. They used a performance-based
strategy to discard less effective potential operations. Shen
et al. [171] presented an automatic search framework for
compact and accurate binary CNN, encoding the number of
channels in each layer into the search space and optimizing
it using evolutionary algorithms. Experiments showed that
this method can yield binary CNN with acceptable model
sizes and computational overheads, achieving performance
matching that of full-precision models.

- Search strategy. Various search strategies are available,
including random search, Bayesian optimization, evolution-
ary algorithms, reinforcement learning, and gradient-based
methods. Recent NAS research focused on exploring the
search space through reinforcement learning and gradient-
based methods [172], [173].

Overall, NAS has tremendous potential in automating the
design of high-performance lightweight networks. However,
it has several limitations as follows. (i) In indirect search
method, the utilization of pre-existing lightweight neural net-
work structures/frameworks for subsequent fine-tuning via
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NAS strategies tends to constrain the exploration space to
predefined architectures. This approach may inadvertently
overlook more optimized or innovative network structures.
(ii) In direct search method, although it allows for direct
exploration of lightweight network structures, setting up the
search space itself can be challenging. A search space that is
too large can lead to inefficient searching, while one that is too
small might not contain effective network architectures. (iii)
NAS typically requires substantial computational resources.
To find the optimal network architecture, it is necessary to
evaluate a large number of different architectures, which often
involves fully training each architecture and assessing its
performance. Although some recent methods aim to reduce
this computational burden, NAS remains a resource-intensive
process. (iv) NAS involves multiple components and choices
of hyperparameters, resulting in architectures that lack explain-
ability, making them hard to understand and adjust.

D. Summary and Lessons Learned

The deployment of DL on IoT and embedded devices is a
crucial aspect of the end-edge-cloud collaboration framework.
In this section, we review the recent mainstream DLM com-
pression approaches and derive the following lessons.

1) Holistic and systematic considerations for pruning and
sparsification: Pruning methods come in two primary forms:
pruning after training and pruning at initialization. Pruning
after training involves pre-training a large over-parameterized
model and then iteratively pruning unimportant weights, fol-
lowed by fine-tuning. Pruning at initialization prioritizes model
structure overweights and aims to create a sparser network
from the start. However, model structure and parameters are
interconnected, necessitating the development of holistic and
systematic pruning methods that strike a balance between
the two aspects. This also holds promise for enhancing the
interpretability of DLMs.

2) Parameter sharing and quantization require collabora-
tion with other methods: Parameter sharing involves mapping
parameters to a smaller data space, effectively reducing storage
requirements, particularly in fully connected layers. However,
it is not easy to generalize, for example, its application to
convolutional layers remains challenging. Relatively, parame-
ter quantization has good compatibility and can be combined
with other compression techniques in practical use. However,
it faces limitations in terms of compression rates, potentially
compromising network capacity and feature quality. In addi-
tion, quantization introduces noise into gradient information,
making convergence in gradient-based training processes more
challenging, with binarized networks experiencing more sig-
nificant accuracy drops.

3) Manual design and NAS demand creativity and ex-
ploratory: On the one hand, manual design of lightweight
networks relies on designers’ expertise, intuition, and exper-
imentation. These networks often have limited compatibility
with other compression and acceleration methods due to their
unique structures. Meanwhile, models based on lightweight
convolutional kernels may struggle to generalize features ef-
fectively due to their restricted capacity. On the other hand,

current NAS methods are typically built upon existing models
as the backbone network and involve the manual selection
or heuristic strategies for structure search, limiting the search
space and potentially leading to suboptimal solutions. Future
developments may involve leveraging strategies such as rein-
forcement learning to automate network structure searches and
achieve better-performing network structures.

4) Future trend: The rapid advancement of large-scale
foundation models exemplified by ChatGPT and Pangu has
ushered in a demand for efficient and cost-effective deploy-
ment on the edge or end devices. However, existing com-
pression and acceleration techniques are primarily tailored for
CNN, and often focus solely on software-level optimizations.
Consequently, it has become an imperative trend to craft
dedicated compression techniques and hardware architectures
explicitly tailored to large models.

V. MODEL PARTITIONING TECHNOLOGIES
FOR DEEP LEARNING

Model partitioning is a crucial aspect of both end-edge-
cloud model-distributed co-training and co-inference. Com-
pared with inference that involves only forward computation,
parallel training in the context of end-edge-cloud necessitates
frequent exchanges of parameter and gradient information
between nodes. This can lead to reductions in both gen-
eralizability and efficiency. Consequently, both industry and
academia have placed significant focus on model-distributed
co-inference. This section aims to introduce model partition-
ing techniques specifically designed for end-edge-cloud co-
inference. Relevant concepts and techniques presented here
can also offer valuable insights for co-training scenarios.

A. Layer-level Partitioning

The concept of layer-level partitioning for end-edge-cloud
co-inference stems from several key observations as follows.
(i) The overall execution time of a DLM is influenced by both
model computation time and data transfer time. In cloud-based
DL, the primary bottleneck lies in the data transfer overhead
between data sources and the cloud. (ii) There are intermediate
layers within DLMs where the output data volume is signifi-
cantly smaller than the original data, presenting an opportunity
for lower latency and reduced energy consumption during
data transmission. For example, the input data volume of tiny
YOLOv2 is 0.95 MB, whereas the output data volume of the
intermediate layer (max5) is only 0.08 MB, representing a
reduction of 93% [174]. (iii) Enhanced computing power can
reduce the computation time of a DLM or its components,
potentially resulting in time savings that outweigh the data
transmission time between end-edge-cloud nodes.

These observations form the basis for dividing a DLM
into multiple parts and deploying them across end-edge-cloud
computing nodes. As shown in Figure 4, the segments run
serially in a pipelined manner, with each partition’s output
serving as the input for the next, all interconnected through
a network. A key challenge in implementing this layer-level
computation partitioning strategy is determining the optimal
partition point within a DLM while considering resource
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constraints, such as energy, computing power, storage, and
dynamic network conditions. The goal is to meet performance
requirements such as latency and accuracy.

One notable attempt to address this challenge is Neurosur-
geon [101]. First, it predicts the execution time and energy
consumption of each layer on both end and cloud nodes
using specific regression models based on DLM types. These
prediction models utilize input variables like the size and
number of input and output feature maps, and the number of
input neurons. Then, Neurosurgeon evaluates various partition
schemes to identify the optimal partition point that minimizes
latency or energy consumption for end-edge-cloud scenarios.
In experimental tests of 8 DLMs, Neurosurgeon achieved an
average runtime acceleration of 3.1 times (up to 40.7 times)
and an average energy consumption reduction of 59.5% (up
to 94.7%) for mobile devices when compared to cloud-only
DLM execution. Moreover, the framework increased cloud
data throughput by an average of 1.5 times (up to 6.7 times).

Neurosurgeon has opened up the research field of layer-level
computation partitioning for end-edge-cloud co-inference.
However, it still has certain limitations that warrant consid-
eration.

1) Optimality: Neurosurgeon aims to divide a DLM into
two parts and execute the front part on the end device and
the back part on the cloud server. It may not be the optimal
solution, because multiple partition points can exist within a
DLM, allowing various layers to be computed on different
end-edge-cloud nodes. Moreover, the prediction models used
by Neurosurgeon to estimate latency and computing power
consumption on mobile devices and cloud servers suffer from
prediction accuracy issues. This is exacerbated by the fact
that runtime optimization by programming frameworks like
Caffe, TensorFlow, and PyTorch causes the execution time of
a sequence of layers to differ from the sum of independent
execution times for each layer [102], [175].

2) Adaptability: As DLMs become more complex, incor-
porating features like residual connections, dense connections,
and attention mechanisms, they often adopt directed graph
structures, rather than simple chain-like ones, for example,
GoogleNet and ResNet with directed acyclic graphs (DAGs),
long short term memory or recurrent neural networks (RNNs)
with recurrent structures. However, Neurosurgeon and subse-
quent studies [176]–[178] are better suited for simpler, chain-
like DLMs such as Tiny-YOLOv2, VGG16, and AlexNet,
and can not optimally partition DLMs with more complex
structures like DAGs or recurrent structures [174]. To handle
such complex DLMs, more advanced graph-theory analysis is
required.

3) Dynamicity: Neurosurgeon’s prediction models are con-
structed in advance for specific hardware platforms and net-
work environments. However, the increasing diversity of end-
edge-cloud devices and the volatile nature of network con-
ditions pose challenges. Creating prediction models for each
unique hardware and network environment would require ex-
tensive measurements and resources, making it impractical to
adapt to dynamic changes in the end-edge-cloud environment.

In light of the above issues, Hu et al. [174] researched the
layer-level partition of DLMs characterized by DAGs. They

proposed a dynamic adaptive DNN surgery (DADS) scheme
and formulated the partition problem as a min-cut problem on
a DAG under the condition of light network loads. As shown in
Figure 8, for a neural network M , DADS constructed a DAG
model G = 〈V,E〉, where V = {v1, v2, . . . vn} denotes the n
vertices in G, with each vi ∈ V corresponding to a layer in M ,
v1,vn represent the input and output layers respectively, while
edges depict dependencies between layers vi, vj . Based on G
and subsequent steps, a latency graph G′ as shown in Figure 9
can be built, paving the way for formulating the optimal DLM
partition problem as a min-cut problem on G′.

Step 1: Add vertices e and c to G which represent the
starting and ending points of the DAG, respectively. In Figure
9 (b), these vertices are highlighted in red and grey;

Step 2: Connect the vertex e to all vertices in V , with the
edges’ weights < e, vi > indicating the execution time of layer
i in the cloud. This is illustrated by the red edges in Figure 9
(b);

Step 3: Connect all vertices in V to vertex c with the edge
weight < vi, c > representing the execution delay ei of layer i
at the edge. These connections are depicted as the blue edges
in Figure 9 (b).

Step 4: The weight of each edge < vi, vj > in E is set
to the data transfer delay ti from vertex vi to vertex vj . If a
vertex vi has more than two succeeding vertices, an additional
virtual vertex vi

′ is added after vi, and the edge weights <
vi, vi

′ > and the edge weight < vi
′, vj > are set to ti and

+∞, respectively. An example is the vertex v1 in Figure 9
(b).

Once the latency graph G′ is constructed, DADS utilizes
a DNN surgery light algorithm to identify a minimum link
cut that divides the vertices into two disjoint sets Ve and
Vc, achieving the minimum total inference latency Ttotal. The
neural network layers corresponding to the vertices in Ve and
the vertices in Vc are executed at the edge and in the cloud
respectively. For example, Ve = {v1} and Vc = {v2, v3, v4}
in Figure 9 (b). Meanwhile, the total inference latency is
calculated as Ttotal = Te + Tc + Tt, where Te =


vi∈Ve

ei
represents the total execution latency at the edge, Tc =

vj∈Vc
cj denotes the total execution latency in the cloud,

and Tt =


(i,j)∈Ec
ti signifies the total transmission latency

across the links connecting Ve to Vc.
However, as significantly shorter computation time for each

layer is needed in the cloud compared to edge nodes, DADS
may opt to allocate all neural network layers to the cloud.
This choice is impractical and neglects the advantages of
edge nodes and end devices. Furthermore, the execution of
DADS can be time-consuming. For example, it took over 18.14
seconds on the Raspberry Pi 3B platform to divide the ResNet-
18 model with 111 layers [175]. Therefore, Zhang et al. [175]
introduced an additional transmission cost τ during the con-
struction of the latency graph G′ to enhance the realism of the
partition scheme. As shown in Figure 9 (c), this modification
involved adding a vertex o and three links < e, o >,< o, c >
and < o, v1 > with weights of +∞, 0, and a model-dependent
value τ , ensuring that τ >


vi∈V (ej − cj) + t1. A new

method for measuring layer computation latency was also
proposed, with ti = T (1, i) − maxj∈i−1T (1, j), where ti
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Fig. 8. Partial GoogleNet and corresponding directed acyclic graph [174].

Fig. 9. Constructing the latency graph G′ from G representing the DLM.

represents the execution time of the i-th network layer, and
T (1, i) denotes the total time required to execute the 1st to
i-th network layers. Since the optimal partition of the model
must be between two adjacent cut vertices in the DAG, a two-
stage algorithm, called QDMP (quick deep model partition), is
proposed to solve the min-cut problem on a DAG. Compared
to DADS, the problem-solving speed has been improved by
66.3 times.

Although QDMP can calculate a more accurate inference
time for each layer, QDMP and DADS only obtain one
partition point and fail to jointly optimize the delay and energy
consumption, potentially resulting in suboptimal solutions. In
contrast, JointDNN [102] offers the capability to optimally
segment a model into two or more parts for collaborative
computation across end and cloud nodes. Moreover, it can
be extended to handle complex neural networks such as those
with residual connections. JointDNN introduces the concept
of the JointDNN graph model, which represents a DNN as a
sequence of distinct layers with a linear topology. As depicted
in Figure 10, node Ci:j represents that layers i to j are
computed in the cloud, while node Mi:j indicates that layers
i to j are computed on the mobile device. Using this rep-
resentation, JointDNN transforms the problem of partitioning
DNN computations into finding the shortest path from S to F
in a graph. For both training and inference, it constructs an
integer linear programming model by incorporating constraints
such as mobile battery limitations, cloud congestion, and
quality of service requirements. This model aims to find the
optimal partition of the model with minimal latency or energy
costs. However, as JointDNN relies on an application-specific
profiling method to measure the runtime DNN architecture,
network execution latency, and energy consumption, it may
not be effective in dynamic end-edge-cloud scenarios.

Overall, DADS, QDMP, and JointDNN possess the capa-
bility to model DLMs as DAGs and perform partitioning.
Despite their respective advantages, they still face common

TABLE IV
PARAMETER DEF INITION OF JOINTDNN GRAPH MODEL

Param Description
U1 The cost of uploading the input of the first layer

MEi:j The cost of executing layers i to j on the mobile
CEi:j The cost of executing layers i to j on the cloud
EUi:j The transition cost from the mobile to the cloud
EDi:j The transition cost from the cloud to the mobile
φk All the following edges:∀i = 1 : k − 1 EDi,k−1

Ωk All the following edges:∀i = 1 : k − 1 MEi,k−1

Ψk All the following edges:∀i = 1 : k − 1 EUi,k−1

Γk All the following edges:∀i = 1 : k − 1 CEi,k−1

Πm All the following edges:∀i = 1 : n MEi,n

Πn All the following edges:∀i = 1 : n EDi,n

issues and challenges as follows. (i) These approaches require
prior measurements of computation latency for network layers
specific to certain hardware and communication environments.
This lack of adaptability to dynamic environments can be
a limitation. (ii) All three approaches rely on maintaining
a complete DLM on both the end (edge) and the cloud to
support dynamic partitioning. However, as DLMs continue to
grow in scale, storage space on end or edge nodes becomes
a constraint. Combining model compression techniques can
be a potential solution to further reduce model size and com-
putation load. For example, Auto-Split [12] jointly optimized
the split point and bit-widths for weights and activation of
layers on the edge device, while BBNet [103] combined
channel-pruning, feature compression, and model partition
methods. (iii) Network communication remains a bottleneck
for end-edge-cloud scenarios. To address this challenge, data
compression techniques, such as lossless compression [102],
lossy compression [176], and JPEG feature encoder [179], can
be used to reduce the amount of data transmitted among end
devices, edge nodes, and clouds. However, it’s important to
note that data compression often comes at the cost of a certain
level of inference accuracy.
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Fig. 10. JointDNN graph model. The shortest path from S to F determines the computation partition of the DNN layers across mobile devices and the cloud
[102].

Fig. 11. Schematic diagram of neuron-level partition.

B. Neuron-level Partitioning

Neuron-level partitioning involves the segmentation of
DLMs at the granularity of individual neurons such as weight
matrices, filters, convolution kernels, etc. into several parts
along a specific dimension. These partitions are then computed
separately on end-edge-cloud nodes. There are two primary
strategies for neuron-level partitioning: channel partitioning
and spatial partitioning.

1) Channel partitioning: Channel partitioning strategies
can be divided into input data channel partitioning and output
data channel partitioning.

- Input data channel partitioning. As shown in Figure
11 (b), the output data {I1, I2, I3, I4} produced by neurons
{a1, a2, a3, a4} in the upper layer is divided into several
subsets, e.g. {I1, I2}, {I3, I4}, which are then transmitted
to downstream computing nodes as input. Accordingly, each
node possesses a crucial portion of the DLM weight pa-
rameters required to compute the output sub-dataset, e.g.,
{O1,1, O2,1, O3,1, O4,1} or {O1,2, O2,2, O3,2, O4,2}. Subse-
quently, the output sub-datasets from different nodes are
aggregated (e.g., using a vector addition scheme), to form
a complete output dataset {O1, O2, O3, O4}, which is then
forwarded to the next layer. Taking a convolutional layer as
an example, as shown in Figure 12, an RGB image serves
as the input, consisting of 3 channels, corresponding to 3
kernels within each filter. The outputs of these 3 kernels are
summed to generate the output feature map of the filter. If there
are 4 filters, then 4 feature maps (4 channels) are produced
as output. Input data channel partitioning for a convolution

layer specifically involves partitioning the kernels. The input
dataset is divided according to the number of computing nodes
by channel, and each node uses the corresponding kernels to
compute the input feature map. The feature maps are then
aggregated for subsequent processing in the next layer.

- Output data channel partitioning. As shown in Figure
11 (c), this strategy involves transferring all the output data
{I1, I2, I3, I4} from neurons {a1, a2, a3, a4} in the upper
layer to computing nodes. Each node possesses an essential
portion of weight parameters to generate a subset of output
data corresponding to the input data, such as {O1, O2} and
{O3, O4}. The output data from all nodes are merged to obtain
a complete output data {O1, O2, O3, O4}. In the context of a
convolutional layer, output data channel partition essentially
involves partitioning the filters. As shown in Figure 13, filters
are distributed across two computing nodes, each of which
possesses a full copy of the input data. These individual
filters are used to process the input data and produce the
corresponding feature maps. Subsequently, all feature maps are
combined to form the input data for the next layer. The output
data channel partitioning offers more advantages during DLM
training as it reduces the communication cost associated with
synchronizing network parameters. However, distributing input
data to all computing nodes introduces significant additional
communication overhead, which makes output data channel
partitioning less practical for inference scenarios [180].

In practical applications, the channel partitioning strategy
can be implemented in either a layer-wise or fused-layer man-
ner. For example, DeeperThings [181] employs a two-layer
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Fig. 12. Input data channel partitioning of a convolutional layer.

Fig. 13. Output data channel partitioning of a convolutional layer.

fusion approach, initially utilizing the output data channel
strategy and subsequently employing the input data channel
strategy for convolutional layers in a CNN during multi-
device parallel computing. Compared to layer-wise channel
partitioning, the fused-layer approach proves effective in re-
ducing communication costs between devices since it only
necessitates communication between nodes for the input of
the first layer and the output of the last layer. However, it
does impose higher demands on the computational and storage
resources of the nodes.

2) Spatial partitioning: Spatial partitioning involves divid-
ing the input or output data into several parts and processing
these partitions across end-edge-cloud nodes. In this method,
as shown in Figure 12 (d), the input data {I1, I2, I3, I4}
is split into segments, such as {I1,1, I2,1, I3,1, I4,1} and
{I1,2, I2,2, I3,2, I4,2}. Each of these segments is then transmit-
ted to a computing node that possesses all the model parame-
ters. These nodes process the partitioned input data to generate

segmented output data, such as {O1,1, O2,1, O3,1, O4,1} and
{O1,1, O2,1, O3,1, O4,1}. Finally, the segmented output data
from all nodes is combined to form the complete output
data {O1, O2, O3, O4}. Spatial partitioning offers advantages
in terms of reduced communication costs between devices,
making it suitable for scenarios involving large input data.
However, it requires each device to maintain a copy of the
DLM, which may not be practical for resource-constrained
devices with limited storage capacity.

This spatial partitioning method is commonly applied to
convolutional layers, with two main partitioning rules: grid
partitioning and vertical partitioning.

- Grid partitioning. As shown in Figure 14 (a), grid
partitioning is used to divide the output data (feature maps)
into n parts horizontally and vertically. By considering the
size of the convolution kernel, as well as the dimensions and
locations of the required input feature maps for each segment
of the output feature map, the input data can be divided into ’n’
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Fig. 14. Output data channel partitioning of a convolutional layer.

copies for distributed processing across convolutional layers.
- Vertical partitioning. As shown in Figure 14 (b), the

vertical partitioning involves dividing the output data (feature
maps) into n vertical segments. Vertical partitioning also relies
on reverse inference based on the convolution kernel’s size
and the dimensions and positions of the required input feature
maps for each output segment.

These partitioning strategies are commonly applied to con-
volutional layers to optimize distributed processing in DLMs.
It is worth noting that, except for 1*1 convolution, both grid
partitioning and vertical partitioning methods can result in
overlapping portions of the input feature maps in Figure 14
(a) and (b). This overlap can lead to redundant communication
costs. Specifically, for grid partitioning, if the output feature
map (with a size of m×m) is equally divided into n copies,
the amount of overlapping data generated can be calculated
using the formula [sm +

√
n(f − s)]2 − [sm + f − s]2. For

vertical partitioning, the overlapping data can be calculated
as (sm + f − s) · [sm + n(f − s)] − [sm + f − s]2.
Here, the size of the convolution kernel is f × f , and s is
the step length, usually f ≥ s. When n is the same, the
overlap generated by grid partitioning tends to be smaller than
that of vertical partitioning. Therefore, the choice between
these spatial partitioning methods should be made carefully,
taking into account the specific scenario to reduce the number
of communication channels established between devices and
decrease data transmission time.

Similar to channel partitioning, spatial partitioning strategies
can be implemented as layer-wise or fused-layer methods.
Multi-layer fusion approaches are advantageous as they can
reduce communication costs between nodes and achieve sig-
nificant computational acceleration. Mao et al. [109] designed
the BODP (Biased One-Dimensional Partition) model par-
tition method which segments each convolutional layer of
VGG-16 using the vertical partitioning technique. Zhao et al.
[110] designed DeepThings, a distributed CNN deployment
framework for edge nodes, which utilized a grid partitioning
method for fused layers to reduce memory usage and inter-
device communication overhead for end devices. However,
DeepThings did not optimize the fully connected layer in
CNNs, which has been addressed in DeeperThings [181]. Zhou
et al. [180] proposed an adaptive CNN acceleration framework
that dynamically selects the optimal partition strategy based on
the status of computational resources and network conditions.
They used grid partitioning with convolutional layer fusion.
Experimental results show speedups ranging from 1.9 to 3.7
times for three popular CNN models on 8 Raspberry Pi3

devices connected wirelessly.

C. Summary and Lessons Learned
1) End-to-end environment-aware layer-level partitioning:

The choice of the cut points for a DLM using layer-level par-
titioning can vary depending on several factors, such as model
size, available computing resources, the number of end-edge-
cloud nodes, network conditions, and optimization objectives
such as end-to-end inference latency, energy consumption,
optimization time, etc. To determine optimal partition points,
especially for DLMs with directed graph structures, graph
theory analysis and path optimization methods can be applied.
Special attention should be given to DLMs with directed cyclic
graph structures, which require further exploration. Given the
dynamic nature of power, storage, and network bandwidth in
terminal devices, the development of lightweight and adaptive
methods for end-to-end layer-level partitioning remains an
ongoing challenge.

2) Customized neuron-level partitioning: Neuron-level par-
titioning is suited for larger DLMs with a larger number of
layers, making it a useful approach for distributing one or
more horizontal layers across resource-constrained end-edge-
cloud nodes. This method can also be combined with layer-
level partitioning for fine-grained tasks. However, due to the
diversity of model structures and device types, a customized
neuron-level partitioning approach is often required, possi-
bly in conjunction with hardware optimization. Meanwhile,
neuron-level partitioning may increase communication and
data synchronization between computing nodes, making it
more suitable for DLMs operating in robust network envi-
ronments.

3) Future trend: The increasing complexity of DL model
variants (e.g. dynamic DL which can conditionally skip or
add the computation of network layers such as early exiting,
layer skipping, and dynamic routing according to different
tasks and inputs) and the endless emergence of edge-cloud
intelligent collaboration paradigms pose challenges for effi-
cient, dynamic and flexible partitioning and orchestrate large-
scale DLMs in the end-edge-cloud framework. These issues
can be solved with the architecture of deep learning-as-a-
service (DLaaS) which is an emerging paradigm for devel-
oping service-oriented DL services and applications. There
are several advantages of deploying DLaaS in end-edge-cloud
CPN as follows.

- Modularity and personalization. DLaaS breaks down
DL models into independent services or microservices, each
focusing on a specific task or function. This modular na-
ture makes DL models easier to manage and personalize to
support dynamic DL and edge-cloud intelligent collaboration
paradigms.

- Flexibility and scalability. Large-scale DL services can
be customized and optimized to meet dynamic demands and
resource availability. On the one hand, DLaaS enables the
choosing of end-edge-cloud computing nodes that best suit
each DL microservice. On the other hand, DL microservices
can scale independently based on fluctuations in load.

- Independent and robustness. DL microservices can be
deployed and updated independently, allowing upgrading or
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fixing individual models without affecting the entire system.
Moreover, the robustness of DL systems can also be enhanced
by the redundant deployment of DL microservices.

- Efficiency and fast response. DL microservices allow for
reuse across multiple applications, saving development time
and resources. Moreover, DLaaS enables the intelligence to
sink to edges and terminals that are close to users for fast
response and low latency capabilities.

Therefore, partitioning and orchestrating large-scale DLMs
based on the DLaaS in the end-edge-cloud framework will
become a major trend in the future.

VI. KNOWLEDGE TRANSFER TECHNOLOGIES
FOR DEEP LEARNING

Effective knowledge sharing plays a pivotal role in facilitat-
ing mutual learning and collaborative updates across end-edge-
cloud systems. This section focuses on knowledge transfer
techniques within the realm of DL, including transfer learning
and knowledge distillation.

A. Transfer Learning

Transfer learning is the practice of leveraging existing
knowledge from a source domain or task to enhance learning
in a target domain or task. The effectiveness of transfer learn-
ing is often contingent on the degree of correlation between
the source and target domains or tasks. Identifying common
knowledge shared between these domains is paramount to
successful transfer learning. Depending on the nature of the
knowledge, as shown in section III-C, end-edge-cloud transfer
learning can be classified into the following types.

1) Data-based transfer learning.: It aims at sharing source
domain knowledge including instance knowledge, data repre-
sentation knowledge, and data relational knowledge.

- Instance knowledge-based transfer learning. It care-
fully selects relevant samples from the source domain dataset
to assist training within the target domain. Weighting and
importance sampling are two major strategies. For example,
the ITrAdaBoost algorithm [182] is proposed to adjust the
weights of a wrongly classified instance in a source domain
according to the distribution distance from the instance to a
target domain, and these weighted samples are then integrated
with samples from the target domain to train the target domain
DLM.

- Data representation knowledge-based transfer learn-
ing. It aims to find the common feature space of the source
domain and target domain, including transforming the source
features to match the target ones and transforming both the
source and the target features into a new feature representation.
By doing so, it facilitates the utilization of existing labeled data
samples from the source domain for training within this new
feature space, enhancing transfer learning capabilities.

- Data relational knowledge-based transfer learning. It
uses the correlations between instances, often in the form of
logical relationships or rules, derived from both the source and
target domains. Such correlations are harnessed to facilitate
knowledge transfer between domains, thereby enhancing the
learning process in the target domain.

2) Model knowledge-based transfer learning.: This form
of transfer learning involves the utilization of pre-existing
knowledge from a source domain DLM, which encompasses
parameters or prior hyperparameters, categorized as structured
knowledge (as described in Section III-C). In essence, a model
that has been pre-trained in the source domain for one task can
be fine-tuned or adapted to perform another specific task in
the target domain. For example, structured knowledge such
as weight parameters from a cloud-DLM can be shared with
edge- or end-based DLMs that are further trained or person-
alized using new local data. In addition, model knowledge
extends beyond structural knowledge and encompasses feature
knowledge and model relational knowledge. However, the
transfer of these types of model knowledge typically falls
outside the scope of classical transfer learning and is often
achieved through the application of knowledge distillation
techniques.

3) Advanced transfer learning technologies.: From a tech-
nical perspective, numerous innovative techniques and meth-
ods have emerged. While the space limitations prevent an
exhaustive discussion of these techniques, some of the most
recent advancements in transfer learning can be found in the
literature [44], [183], [184].

- Meta-learning. It aims to enhance generalization per-
formance across multiple tasks or domains by effectively
learning “how to learn”. This involves the automatic selection
of appropriate model architectures, optimization algorithms,
and hyperparameters, facilitating rapid achievement of strong
performance on new tasks.

- Transfer reinforcement learning. Combining techniques
from transfer learning and reinforcement learning, this ap-
proach leverages shared knowledge and experience from re-
inforcement learning across diverse tasks. This leads to ac-
celerated learning and optimization of policies for the target
task.

- Transfer generative adversarial networks. Drawing
inspiration from generative adversarial networks, this method
employs transfer learning to map data from the source domain
to the target domain. This mapping enables data augmentation
and sample generation in the target domain.

- Incremental transfer learning. This approach aims to
achieve progressive transfer learning by introducing new target
tasks continuously. The DLM accumulates knowledge through
gradual learning and adapts to an increasing number of target
tasks over time.

- Multimodal transfer learning. Designed to handle mul-
timodal data, this technique facilitates the transfer and sharing
of information across different data modalities. It enables com-
prehensive learning for the target task by leveraging insights
from diverse sources.

Overall, the transfer of source domain data typically in-
curs higher privacy and communication costs compared to
the transfer of model structure and parameters. Therefore,
model knowledge-based transfer learning methods are often
more suitable for the context of end-edge-cloud co-updating.
Meanwhile, these advanced transfer learning technologies each
have unique advantages and applications, providing robust
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technical support for diverse and personalized end-edge-cloud
co-updating scenarios.

B. Knowledge Distillation

Knowledge distillation, initially proposed for model com-
pression [185], serves the purpose of transferring knowledge
from a large “teacher” model to a compact “student” model.
Recently, it has found applications in model enhancement,
focusing on improving the performance of a DLM by distilling
other DLMs’ knowledge, such as mutual distillation or self-
distillation. Unlike transfer learning, which emphasizes the
knowledge from domain data, knowledge distillation primarily
emphasizes model knowledge including feature knowledge
(intermediate or output feature knowledge), model structure
knowledge, and model relational knowledge, as shown in
Figure 6. For example, the concept of classical knowledge
distillation involves training the student model to replicate the
outputs of the teacher model when presented with the same
input. This process aims to enable the student model to learn
the representation capability inherent in the teacher model.

1) Knowledge distillation in end-edge-cloud co-learning:
The configuration of the knowledge distillation process, in-
volving a “teacher” and a “student” model, aligns exception-
ally well with the end-edge-cloud architecture. The “teacher”
model and “student” model can be deployed across end-edge-
cloud computing nodes to achieve co-updating. For example,
the smaller “student” model can be deployed on edge or end
nodes, while the larger “teacher” model resides in the cloud,
guiding the training of the “student” model. Recent studies
have established the feasibility of knowledge distillation in
end-edge-cloud co-learning. Knowledge distillation technolo-
gies applicable in the end-edge-cloud context include multi-
teacher learning, knowledge amalgamation, teacher assistant,
cross-modal distillation, and mutual distillation.

- Multi-teacher learning. It involves using the knowledge
acquired by multiple teacher models in the context of a single
student model. A simple approach is to utilize soft labels
or intermediate/output feature maps generated by multiple
“teacher” models through voting, random, or weighting poli-
cies [186], [187]. This contributes to the enhancement of the
“student” model’s performance. Meanwhile, the complemen-
tary knowledge [188], [189] possessed by “teacher” models
can be used to guide the training of the “student” model.

- Knowledge amalgamation. It is to transfer knowledge
from multiple “teacher” models (multiple tasks), often asso-
ciated with different tasks, to a single “student” model. For
example, soft-label knowledge with the highest confidence
from multiple “teacher” models can be used to train and
update student models [190]. Alternatively, feature maps from
multiple “teacher” models can be fused to facilitate the training
and updating of the student model [191], [192].

- Teacher assistant. It refers to the utilization of interme-
diate models to assist the student model in acquiring knowl-
edge from the teacher model [193]. This approach effectively
bridges the gap between the “teacher” and “student” models
regarding the large difference in model capacity. Within the
end-edge-cloud framework, a medium-sized model (smaller

than the “teacher” model but larger than the “student” model)
can be deployed on the edge to serve as a teacher assistant.
It first learns from the “teacher” model in the cloud and then
transfers the acquired knowledge to the “student” model on
the end device.

- Cross-modal distillation. It involves training the teacher
model using labeled data from different modalities and then
employing the teacher model to instruct the student model us-
ing information from other modalities. This facilitates knowl-
edge distillation across modalities. For example, in emotion
recognition, the soft labels generated by an image-based emo-
tion recognition model (“teacher”) can guide the training of
a speech-based emotion recognition model (“student”) [194].
Cross-modal distillation effectively utilizes multimodal sample
data but faces challenges related to modal alignment.

- Mutual distillation. It is to enable a group of untrained
“student” models to learn from each other [195]–[197]. The
knowledge acquired includes feature knowledge (such as in-
termediate or output features), model structured knowledge,
and model relational knowledge. Mutual distillation holds
significance as it allows “student” models to mutually learn
from each other to enhance the model performance and speed
up the training process [197].

Both knowledge amalgamation and multi-teacher learning
belong to the category of the “multi-teacher to single-student”
training mode. Their difference lies in their objectives: knowl-
edge amalgamation uses multiple “teacher” models to equip
the “student” model with the capability to handle multiple
tasks, thereby enhancing its overall generalization ability. In
contrast, multi-teacher learning aims to improve the perfor-
mance of the “student” model on a single specific task.

In general, knowledge distillation techniques offer extensive
methodological and technical support for end-edge-cloud co-
updating. Recent research advances in knowledge distillation
can be found in the literature [46], [47], [198].

2) Federated knowledge distillation: Knowledge distilla-
tion has been leveraged as an important technique to address
the challenges associated with communication and computing
efficiency, heterogeneity, and personalization in FL.

- Resource-efficient federated knowledge distillation. On
the one hand, in the classic FL paradigm, the parameter
server and workers need to intensively communicate the model
update information, resulting in huge communication costs,
especially when the model contains numerous parameters.
Knowledge distillation has been introduced in FL to tackle
this issue. For example, in FedKD [199], there is a small
model that learns from a large global model through mutual
knowledge distillation, which is shared by different clients
instead of directly communicating large models between the
clients and the parameter server. Itahara et al. [200] pro-
posed a distillation-based semi-supervised FL algorithm that
exchanges the outputs of local models on the public dataset,
instead of model parameters among mobile devices to achieve
efficient communication. Similarly, Sattler et al. [201] intro-
duced quantization and delta coding to the exchanged outputs
(soft labels) of the local models. On the other hand, a series
of studies [202]–[204] focused on training large models on
resource-constrained devices. For example, He et al. [202]
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designed a variant of the alternating minimization approach to
train small CNNs on edge nodes and periodically transfer their
knowledge through knowledge distillation to a large server-
side CNN.

- Heterogeneous federated knowledge distillation. Most
of the current FL algorithms require homogeneous local de-
vices with the same on-device models. Given the widespread
yet heterogeneous devices in the end-edge-cloud environment,
studies [205], [206] aim to leverage knowledge distillation to
enable FL training heterogeneous on-device models to adapt
to the heterogeneous devices. Yu et al. [205] proposed a
resource-aware FL method that aggregated local knowledge
from edge models that are suitable for heterogeneous devices
with different computing power. Zhang et al. [206] introduced
a federated learning framework with heterogeneous on-device
models through zero-shot distillation.

Other studies aim to tackle the data heterogeneity and
personalization issue in FL. On the one hand, studies [207]–
[212] devoted to addressing the Non-IID challenge for the
global model, by distilling the knowledge such as soft targets
from multiple teacher models trained by different clients to the
global server model. Lin et al. [207] leveraged the unlabeled
public dataset to obtain the soft labels (logits) from multiple
local client models and then updated the global model with
these soft labels. Similarly, Zhu et al. [208] and Zhang et al.
[209] improved this federated knowledge distillation approach
by replacing the public shared dataset with data generated by
the generative model. However, these soft labels can be wrong,
resulting in a performance degradation of the global model.
Thus, DaFKD [210] was proposed to discern the importance of
each client model’s output to reduce the impact of wrong soft
labels. In addition, FedGKD [211] fused the knowledge from
historical global models and guided local training to alleviate
the client-drift issue that could considerably impede the con-
vergence of global model training. On the other hand, studies
[213], [214] aim to realize the client’s model personalization.
In FedICT [213], a bi-directional distillation framework is
proposed to reinforce the clients’ fitting of local data while
alleviating client drift issues. Jin et al. [214] proposed a
personalized federated learning framework via self-knowledge
distillation, which allows clients to distill the knowledge of
previous personalized models to current local models.

Most of the above approaches require that the data distribu-
tion of publicly available datasets should closely resemble that
of local training data at clients. However, it is not easy to get or
generate such datasets whether labeled or not. Meanwhile, it is
important to note that the favorable properties of all federated
knowledge distillation methods come at the cost of additional
computational overhead caused by knowledge distillation. This
additional computational overhead might be challenging to
resource-limited client devices. In addition, these approaches
also exchange model parameters or knowledge such as logits
recursively, resulting in privacy issues. Gong et al. [215]
developed a privacy-preserving and communication-efficient
method in an FL framework with quantising and adding noise
on logits for aggregation and distillation.

C. Efficient Fine-tuning of Foundation Models

Foundation models are trained on massive, diverse, and
unlabeled datasets, typically through self-supervised learning,
and can be applied to numerous downstream tasks [216],
[217]. On a technical level, foundation models are enabled
by transfer learning where a model is trained on a source
domain and then adapted to the downstream task (target
domain) via fine-tuning [216]. This subsection introduces two
branches of representative efficient fine-tuning approaches,
including parameter-efficient fine-tuning and resource-efficient
fine-tuning.

1) Parameter-efficient fine-tuning: Full parameter fine-
tuning that updates all the parameters with different instances
for different tasks, is rendered impractical for large-scale foun-
dation models due to the high cost of computation and storage
[218]. This necessitates a branch of research on parameter-
efficient fine-tuning that aims to adapt a foundation model to
downstream tasks by updating a small portion of the model
parameters to reduce computation and storage overhead. One
simple approach involves manually or heuristically adapting a
small set of parameters of the foundation models to different
downstream tasks. For example, BitFit [219] froze most of
the transformer-encoder parameters and trained only the bias-
terms and the task-specific classification layer, which could
still reproduce over 95% performance on several benchmarks.
However, this approach relies on expert experience and re-
quires targeted design for specific foundation models. Recent
studies have introduced a modest amount of trainable param-
eters, facilitating domain adaptation for pre-trained extensive
models by optimizing these additional parameters on tailored
datasets, significantly diminishing computational overhead and
lowering the barriers to fine-tuning foundational models. These
approaches mainly include adapter-based tuning, prompt-
based tuning, and low-rank adaptation.

- Adapter-based tuning. Adapters are small-scale and
trainable neural modules that can be integrated into foun-
dation models’ layers. For example, the adapters are sepa-
rately inserted after the multi-head self-attention and the feed-
forward network sublayers in the transformer layer, and only
these adapters are tuned for domain adaptation. A simple
instantiation of the adapter contains a down-projection and an
up-projection [220]. The down-projection converts the input
d-dimensional feature h ∈ Rd to a r-dimensional space
with a parameter matrix Wd ∈ Rd×r and is followed by a
non-linear function f(·). Then the up-projection Wu maps
the r-dimensional representation back to d-dimensional space
and is added with a residual connection. As the adapter
has demonstrated impressive parameter tuning efficiency and
robustness [221], and thus has been widely adopted. Efforts
[222]–[225] have been devoted to designing efficient adapters
and placement strategies. For example, AdaMix [223] can
leverage a mixture of adapters like Houlsby or a mixture
of low-rank decomposition matrices like LoRA to improve
downstream task performance. AdapterDrop [224] removes
adapters from lower transformer layers during training and
inference.

- Prompt-based tuning. It injects trainable prompt tokens
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with additional context to the original input. At present,
these trainable prompt tokens can be incorporated into the
input layer (known as prompt-tuning [226]) and each of the
intermediate layers (known as prefix-tuning [227]). Prefix-
tuning [227] adds trainable continuous prefix tokens to each
layer in a large language model, and keeps language model
parameters frozen while optimizing these continuous prefix
tokens. Similarly, LLaMA-Adapter [228] adopts a set of
learnable adaption prompts as prefixes to the input word em-
beddings at higher transformer layers. Compared with prefix-
tuning, prompt-tuning [226] is a more simplified strategy that
only injects soft prompts to the input layer such as soft
prompt [226], P-tuning [229], and P-tuning V2 [230]. Recent
advancements explore how soft prompts could be used for
few-shot [231], pre-training [232], or multitask [233].

- Low-rank adaptation. It leverages low-rank representa-
tions to minimize the number of trainable parameters. For ex-
ample, LoRA [234] freezes the pre-trained model weights and
injects two trainable rank decomposition matrices A ∈ Rm×r

and B ∈ Rr×n into each layer of the Transformer architecture
to tuning the weight matrix W ∈ Rm×n as W ← W +A ·B.
This approach is straightforward to implement and decreases
the trainable parameter count while still allowing the tuning
of high-dimensional matrices.

Overall, the parameter-efficient fine-tuning is computational
efficiency, for example, the training of adapters could be
60% faster than vanilla fine-tuning [218]. However, both the
adapter-based tuning and the prompt-based tuning have the
problem of increasing inference delays. The adapter-based tun-
ing adapts the pre-trained model to downstream tasks through
the adapter module, which adds additional model parameters
and brings about inference delay issues. For prompt-based
tuning, increasing the length of the input by 20-100 tokens
can significantly increase computation [235]. In addition,
prompt-based tuning methods have the problem of difficulty in
optimization, as they converge slower than full parameter fine-
tuning and other parameter-efficient fine-tuning methods [218].
Comparatively, the low-rank adaptation stands out as it does
not introduce additional inference latency, exhibits a reduced
training threshold, and demonstrates robust compatibility. This
approach is congruent with the majority of efficient parameter
fine-tuning algorithms, allowing for its integration to further
enhance the performance of large-scale models on novel tasks.

2) Resource-efficient fine-tuning: As foundation models
scale up, the computation and memory needed for fine-
tuning is dramatically increased, which limits the fine-tuning
efficiency for resource-constrained end-edge-cloud devices.
Consequently, minimizing computation and memory usage in
fine-tuning has emerged as a critical topic. One approach
is based on quantization [236]–[239]. For example, QLoRA
[236] quantizes the model parameters into 4-bit and fine-
tunes this quantized model with a low-rank adapter, which
reduces memory usage to fine-tune a 65B parameter model on
a single 48GB GPU while preserving full 16-bit finetuning task
performance. Another approach is based on gradient [240],
[241]. For example, Malladi et al. [241] adapted the classical
zeroth-order-SGD method to operate in-place, thereby fine-
tuning language models with the same memory footprint as

inference. In addition, LoRA-FA [242] is a memory-efficient
fine-tuning method that chooses to freeze the projection-down
weight and update the projection-up weight in each LoRA
layer.

D. Summary and Lessons Learned

1) Knowledge distillation versus transfer learning: Both
knowledge distillation and transfer learning involve the trans-
fer of knowledge. However, knowledge distillation and transfer
learning respectively emphasize the transfer of knowledge
from models and the transfer of knowledge from data. The
distinctions and connections between knowledge distillation
and transfer learning are outlined as follows.

(i) The concept of transfer learning is relatively broad,
including both data-based transfer and model-based transfer,
while knowledge distillation is essentially a specific form of
model-based transfer learning. In essence, knowledge distilla-
tion serves as a means to achieve transfer learning.

(ii) Knowledge distillation primarily serves the purpose of
compressing or enhancing the “student” DLM, focusing on
model size and performance improvements. In contrast, trans-
fer learning typically does not address the lightweight model
issue and is more oriented towards addressing challenges like
limited labeled data or domain adaptation using data or model
knowledge from other domains.

(iii) In transfer learning, the target and source domains
can be homogeneous or heterogeneous, and learning often
takes place on different datasets, addressing tasks like domain
adaptation. However, knowledge distillation typically operates
within the same dataset, with a focus on enhancing or com-
pressing the model.

(iv) Knowledge distillation mainly involves model knowl-
edge which can originate from one or multiple homogeneous
or heterogeneous DLMs, typically focusing on the feature
knowledge of the model. However, conventional transfer learn-
ing methods primarily use knowledge from other domains’
data to train models in the target domain and rarely use model
knowledge.

2) Efficient fine-tuning: Parameter-efficient fine-tuning has
demonstrated its practicality. However, such kind of meth-
ods are still not well understood and are highly sensitive
to hyperparameters. Moreover, existing methods introduce
trainable parameters to different tasks depending solely on
human heuristics and neglect the domain gaps [243]. There-
fore, matching the performance of full fine-tuning approaches
remains a challenge. In addition, edge and end nodes have con-
straints in memory, computation, and even energy. To mitigate
these challenges, resource optimization for fine-tuning can be
effectively achieved through the integration of techniques such
as quantization and pruning.

3) Future trend: DL systems operating in the real world
are exposed to continuous streams of information and thus are
required to continuously learn and remember multiple tasks
from dynamic data distributions. Continual learning, which
refers to the capability of a DLM to continuously acquire new
knowledge and adapt to new data without forgetting previously
learned knowledge, has become the mainstream trend in the
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Fig. 15. Challenges of end-edge-cloud computing power network for deep
learning.

future. However, traditional knowledge transfer technologies
don’t care about catastrophic forgetting and continuous learn-
ing. Therefore, continuous learning with knowledge transfer
will become the future trend.

VII. CHALLENGES AND PROSPECTS OF END-EDGE-CLOUD
COLLABORATIVE DEEP LEARNING

A. Challenges of End-Edge-Cloud Collaborative Deep Learn-
ing Systems

The end-edge-cloud collaborative DL system faces several
challenges, including diverse application requirements, unbal-
anced data distribution, heterogeneous computing resources, a
dynamic network environment, and complex communication
protocols. These challenges impact the optimization, adapt-
ability, and reliability of the system.

1) Optimization: A significant challenge is efficiently
achieving unified scheduling and optimization of distributed
computing power, network, data, and applications within the
end-edge-cloud system. This must strike a balance between
latency, accuracy, and energy efficiency while considering
different application requirements.

CPN [244] is a novel paradigm that further evolves to-
ward the cooperation and integration of computing power
and networks. It aims to provide ubiquitous end-edge-cloud
computing, storage, and network resources to offer every-
where, intelligent, low latency, and flexible services for various
applications [245]. However, the CPN is still in its early stage,
and several open issues need to be addressed before it can
realize its full potential as shown in Figure 15, including (i)
How to measure computing power? (ii) How to estimate the
computational latency and energy consumption of an appli-
cation on a specific resource platform? (iii) How to quickly
synchronize the CPN information? and (iv) How to efficiently
trade computing resources?

2) Adaptability: The adaptability of end-edge-cloud DLMs
is crucial to cater to fast-changing scenarios and diverse appli-
cation requirements. Potential challenges include overfitting,
imbalanced data, domain adaptive, and few-shot learning.
Addressing these challenges requires the design of efficient
model update methods such as transfer learning and fed-
erated knowledge distillation. In addition, dynamic neural

networks [246] offer promise as a solution. These networks
can adjust their structures or parameters based on varying
inputs, making them more efficient, adaptable, compatible,
generalizable, and interpretable compared to static models
[246]. For example, Zhong et al. [247] proposed a DNN
model capable of dynamically adjusting to changes in data
distribution by altering its structure. Future research can focus
on architecture design, optimal methods, and generalization
for dynamic neural networks.

In addition, the adaptability of the system involves man-
aging the heterogeneous end-edge-cloud nodes. Challenges
in this regard include how to design customized models for
different end-edge-cloud nodes, and how to facilitate the rapid
development and deployment of large-scale DL applications.
There are some potential solutions: (i) Integrating various
technologies such as model compression, model segmentation,
and dynamic neural networks to tailor suitable models for
specific hardware platforms. (ii) Integrating microservices and
virtualization technologies to achieve rapid distribution and
deployment of DLMs.

3) Reliability: Due to the complex network environment
and the diversity of end devices, how to ensure the stability and
reliability of the end-edge-cloud system under cross-network
and cross-region environments is very important, especially
for many industrial applications that require ultra-low latency
and high reliability. Therefore, exploring intelligent monitoring
and maintenance technologies for cloud-edge-end systems is
essential. The utilization of real-time monitoring mechanisms
across end-edge-cloud infrastructures, coupled with the appli-
cation of advanced AI techniques for the analytical processing
of amassed monitoring data, facilitates the prognostication of
incipient system failures, thereby preemptively addressing po-
tential disruptions and enhancing the overall system resilience
and reliability.

B. Communication Bottleneck among Heterogeneous End-
Edge-Cloud Nodes

The successful implementation of end-edge-cloud co-
learning depends on efficient interconnection between ge-
ographically distributed end-edge-cloud computing nodes
through high-speed networks. Although current interconnec-
tion networks such as Gigabit/10 Gigabit Ethernet and Infini-
band networks can offer impressive speeds of up to 100 Gb/s,
there remains a noticeable disparity compared to the rapid
data exchange rates achievable within the internal memory.
Moreover, as the number of end-edge-cloud nodes grows,
the associated communication overhead increases, potentially
leading to a “bucket effect”, wherein the overall system
performance is limited by the node with the slowest network
bandwidth. Therefore, when designing a heterogeneous cluster
for end-edge-cloud co-learning, it is necessary to consider the
impact of network bandwidth, latency, and jitter on system
performance.

There are some potential solutions: (i) Data compression. A
common method is to compress the data transmitted between
nodes, including lossless compression and lossy compression.
Lossless compression, although offering a limited compression
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ratio, typically does not impact the performance of DL algo-
rithms. Lossy compression can achieve higher compression
ratios but may affect the usability and effectiveness of the
compressed data. Therefore, how to strike a balance between
reducing communication costs and preserving data utility
becomes a key issue. (ii) Sixth-generation mobile communi-
cation technology (6G): Transitioning to 6G can significantly
improve the communication capabilities of end-edge-cloud
co-learning systems. Unlike previous generations, 6G aims
to provide not only enhanced communication performance
but also greater coverage, increased computing power, and
faster sensing efficiency. It integrates communication, sensing,
and computing to deliver real-time and ultra-reliable com-
munication services for end-edge-cloud DL applications. The
development of an integrated space-air-ground network can
ensure seamless and ubiquitous network access.

C. Self-adaptive Compression and Acceleration of Deep
Learning Models

The adaptivity of end-edge-cloud DLMs signifies their abil-
ity to dynamically adjust and optimize compression techniques
based on specific application demands, the available hardware
resources, and the prevailing network environment on the
target hardware platform. The following challenges still need
to be addressed before self-adaptation can be achieved.

(i) How to evaluate the quality of compression methods is
a key challenge. Existing evaluation criteria often compare
performance indicators between post-compression and pre-
compression models, such as TOP-1, TOP-5, acceleration
ratio, storage space saving rate, compression ratio, etc. While
Cheng et al. [248] have given some suggestions to select com-
pression methods for a particular task, differences in hardware
platforms used for experiments can complicate the unified
evaluation of various compression methods. Moreover, in the
dynamic end-edge-cloud framework, where tasks, available
computing resources, and network environments change fre-
quently, automatically selecting efficient compression methods
and compression ratios becomes challenging. Therefore, there
is a need for the development of more accurate evaluation
models that can guide the selection of compression methods,
accounting for varying environmental factors. (ii) While many
compression methods are designed primarily for CNN, it’s
important to consider the adaptability of these methods to
other types of DLMs, such as RNNs, GNNs, and Transformer-
based models. It remains to be explored whether traditional
compression methods are adaptable to these networks.

In addition to model compression, advanced model archi-
tectures and acceleration techniques such as quantum neural
networks, optical neural networks, and superconducting neural
networks should be investigated further. For example, optical
neural networks [249], [250] harness photonic hardware ac-
celeration for complex matrix-vector multiplications, offering
advantages such as high bandwidth, rapid calculation speeds,
and extensive parallelism compared to traditional electronic
counterparts.

D. Self-adaptive Partitioning of a Deep Learning Model

In the end-edge-cloud framework, it’s crucial to determine
the optimal partition strategy and partition points for a DLM
based on the available computational resources, network con-
ditions, and specific tasks. Moreover, the number of end and
edge nodes also changes dynamically. Selecting the most
suitable model partition strategy for different end-edge-cloud
environments poses a significant challenge. Therefore, to make
full use of these devices, it’s essential to dynamically adjust
the number of nodes, the partition strategy, and partition points
to ensure the scalability and adaptability of end-edge-cloud co-
learning, especially in the context of the rapid growth of IoT
and mobile devices.

In addition, many existing studies assume that DLMs are
static and cannot adapt to changing inputs or device capabil-
ities. However, as dynamic networks become more prevalent,
the static network segmentation approaches may become less
effective. Hence, future research should focus on developing
self-adaptive partitioning technologies for dynamic networks.

E. Effective Knowledge Transfer in End-Edge-Cloud Collab-
orative Deep Learning

In knowledge-based end-edge-cloud co-updating methods,
knowledge can include instance knowledge such as relations
between sample data, and model knowledge such as DLM
parameters, intermediate features, and relations between lay-
ers. However, several challenges need to be addressed in
this context: (i) There is a lack of unified metrics and a
comprehensive knowledge framework in this context. Existing
knowledge transfer techniques are predominantly based on
experimentation or empirical approaches. (ii) Effective theoret-
ical explanations are needed to better understand the selection
of knowledge to migrate and the choice of transfer techniques
for optimal outcomes. (iii) Negative transfer occurs when
transferred knowledge has a detrimental impact on the target
learners [183]. Strategies to mitigate these negative effects and
achieve successful knowledge transfer learning require further
investigation.

F. Security and Privacy of End-Edge-Cloud Collaborative
Deep Learning

The end-edge-cloud architecture utilizes diverse computing
resources to fulfill the real-time, accurate, and resilient require-
ments of DL tasks. However, this distributed and collaborative
computing paradigm also gives rise to significant security and
privacy concerns. On the one hand, within the end-edge-cloud
collaborative framework, data regularly traverses between dif-
ferent layers and various devices. Some of these end-edge-
cloud nodes possess weak security capabilities, rendering them
susceptible to potential attacks. These security vulnerabilities
could compromise data integrity, availability, and overall sys-
tem security. On the other hand, the end-edge-cloud collabora-
tive system often involves multiple organizations with varying
degrees of trust between them. Such malicious actors could
undermine the transparency and security of the collaborative
computing process, potentially leading to various security
breaches.
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Fig. 16. Security and privacy challenges of end-edge-cloud collaborative deep
learning.

Therefore, as shown in Figure 16, (i) in the pursuit of
effective end-edge-cloud solutions, it becomes imperative to
incorporate privacy protection technologies, including dif-
ferential privacy, secure multi-party computing, encryption,
and blockchain [251]. However, data availability and privacy
protection are a pair of contradictions. In particular, DLMs
have complex structures and lack interpretability, rendering
the delicate balance between privacy protection and data
availability challenging to quantify. Therefore, a key research
issue revolves around achieving a tradeoff between data avail-
ability and privacy protection to meet application demands.
Moreover, the substantial computational overhead associated
with current privacy protection methods presents a formidable
obstacle when deploying models on resource-constrained end
devices. Consequently, it becomes imperative to develop a
more streamlined privacy or encryption algorithm within the
framework of the end-edge-cloud co-learning architecture. (ii)
The proficiently trained model can be disseminated across
the end-edge-cloud nodes, potentially leading to unrestricted
access and the risk of infringement upon the model owner’s
intellectual property rights. Consequently, the exploration of
model authorization emerges as a crucial area for future re-
search. For example, methods like backdoor watermarking can
be employed to enhance the protection of the model’s intel-
lectual property. (iii) End-edge-cloud co-learning introduces a
novel perspective on model attack. This novel attack paradigm
doesn’t primarily aim to undermine the DLM’s accuracy. In-
stead, its focal point is to disrupt the collaborative mechanism
or reduce the efficiency of end-edge-cloud collaboration. For
example, early exit attacks [252] have the potential to hinder
the progressive inference mechanism. Hence, both the attack
strategies and safeguards for the end-edge-cloud collaborative
mechanism emerge as an inevitable research trajectory.

VIII. CONCLUSION

Time-sensitive personalized DL requirements and the rapid
development of end and edge computing push researchers
and enterprises to embrace the end-edge-cloud collaborative
computing paradigm. This paradigm plays an important role
in enhancing the DL performance but is still in its nascent
stages of success. To comprehensively present the foundational

principles of end-edge-cloud co-learning, we systematically
review the progress in this direction and attempt to build a
comprehensive research framework. Specifically, in this paper,
we conduct a systematic analysis of collaboration elements
within end-edge-cloud DL from both a system and collabo-
ration perspective. These elements include data, model, and
computing power considerations. We also identify potential
manners and mechanisms for end-edge-cloud co-learning, such
as distributed and collaborative training, inference, and model
updating. Then, we highlight the details and progress of
enabling technologies of end-edge-cloud co-learning. These
technologies include model compression and lightweight tech-
nologies tailored for end and edge computing, model par-
tition methodologies for end-edge-cloud co-inference, and
knowledge transfer strategies for end-edge-cloud co-updating.
Finally, we discuss problems and challenges that still exist in
end-edge-cloud co-learning and the possible research direc-
tions in the future.

We anticipate that with the rapid evolution of end-edge-
cloud computing platforms and the continuous expansion of
DL applications, end-edge-cloud collaboration will mature.
This evolution will enable the resolution of real-time and
personalized DL challenges, thereby generating significant
value for various industries. We hope this survey will stimulate
further discussions and research efforts aimed at advancing the
integration of DL and end-edge-cloud computing within this
promising paradigm.
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