
1

Two-stage Evolutionary Search for Efficient Task
Offloading in Edge Computing Power Networks

Qunjian Chen, Chen Yang, Member, IEEE, Shulin Lan, Member, IEEE, Liehuang Zhu, Senior Member, IEEE, and
Yan Zhang, Fellow, IEEE

Abstract—In this paper, we introduce the concept of edge
computing power network (EdgeCPN) as a new paradigm to
facilitate elastic integration and flexible scheduling of computing
resources for task offloading in CPNs. Previous studies mainly
focused on scheduling computing resources in the vertical dimen-
sion and may not effectively consider the computing resources
selection in CPNs with increasingly diverse computing resources,
which results in inefficient and unstable computing resource
scheduling performance for task offloading. In this paper, we
design an on-demand computing resource scheduling model to
enable efficient task offloading in EdgeCPNs. To improve the
search efficiency and stability, we decouple the search for task
offloading problems in EdgeCPNs into two stages and present
an two-stage evolutionary search scheme (TESA). In stage-1,
TESA first optimizes computing resources selection by searching
a computing resources subset depending on the user budget,
with the objective of maximizing the total gain. In stage-2,
TESA jointly optimizes task offloading decisions and computing
resources allocations based on the subset found in stage-1, with
the objective of minimizing total delay. Numerical results confirm
that the proposed scheme significantly enhances the efficiency and
stability of the computing resources scheduling performance for
task offloading in EdgeCPNs.

Index Terms—Computing power network, mobile edge com-
puting, task offloading, evolutionary optimization, computing
resources scheduling.

I. INTRODUCTION

For compute-intensive and delay-sensitive smart applica-
tions, task offloading is an effective strategy to enhance
application performance and improve user experience [1]–[4].
Popular cloud computing and mobile edge computing (MEC)
paradigms have their own advantages and limitations [5], [6].
Cloud computing provides users with sufficient computing
capability on remote servers, but suffers from the drawbacks
of high latency and low reliability [7]–[10]. MEC serves as

This work was supported in part by the National Key R&D Program
of China under Grant 2021YFB1715700; in part by the National Natural
Science Foundation of China under Grant 62103046, 72201266, 72192843,
and 72192844; in part by the Fundamental Research Funds for the Central
Universities under Grant E1E40805X2 and 2023CX01020. (Corresponding
author: Chen Yang, Shulin Lan).

Qunjian Chen is with the School of Computer Science and Technol-
ogy, Beijing Institute of Technology, Beijing 100081, China (Email: Chen-
QJ@outlook.com).

Chen Yang and Liehuang Zhu is with the School of Cyberspace Science and
Technology, Beijing Institute of Technology, Beijing 100081, China (Email:
yangchen666@bit.edu.cn; liehuangz@bit.edu.cn).

Shulin Lan is with the School of Economics and Management, Uni-
versity of Chinese Academy of Sciences, Beijing 100081, China (Email:
lanshulin@ucas.ac.cn).

Yan Zhang is with the Department of Informatics, University of Oslo,
0316 Oslo, Norway, and also with the Simula Metropolitan Center for Digital
Engineering, 0167 Oslo, Norway (e-mail: yanzhang@ieee.org).

a complementary solution that brings computing capability
from the nearby edge server [11], [12], which contributes to
reducing latency overhead and providing privacy protection for
various applications [13]–[16]. Unfortunately, the edge server
can easily become overloaded and application performance can
be severely degraded. Most studies have considered either the
device-edge two-level task offloading architectures [17]–[19]
or the device-edge-cloud three-level task offloading architec-
tures [20]–[23], as shown in Fig. 1. However, these studies
mainly focus on computing resource scheduling in the vertical
dimension and may not effectively consider the horizontal
collaboration among computing resources.

The convergence of networking and computing is a promis-
ing trend in network evolution [24], [25]. As an innovative
network model, the computing power network (CPN) has
been proposed to facilitate adequate exploitation of hetero-
geneous and geographically distributed computing resources.
Through the integration and scheduling of fragmented comput-
ing resources across different MEC sites, computing resources
sharing can be effectively realized on a broader scale in
CPNs. With the growing diversity of computing resources
owned by various organizations with different features,
the problem of scheduling computing resources for task
offloading in CPNs becomes increasingly complex. Mak-
ing the optimal use of fragmented computing resources for
efficient task offloading in CPNs has become a significant
challenge.

Previous studies have generally addressed the task offload-
ing problem in CPNs by searching the task offloading deci-
sions and computing resources allocations [26], [27], but have
rarely considered the critical aspect of computing resources
selection. First, they usually assume that all computing
resources in CPNs are available for task offloading. How-
ever, this does not align with the actual situation, as access
to computing resources is usually constrained by limited
user budget. It also inevitably leads to a decrease in search
efficiency, because the search space for task offloading prob-
lems significantly increases with the expansion of available
computing resources in CPNs. Therefore, integrated search
schemes for identifying task offloading decisions and com-
puting resources allocations can frequently become entangled
with sub-optimal solutions, resulting in inefficient computing
resources scheduling performance for task offloading in CPNs.
Second, they may not effectively compare the different
computing resources in CPNs, with difficulty in wisely se-
lecting the most appropriate computing resources to satisfy
the performance and cost requirements of users [23]. For

2

example, given that computing resources in CPNs may vary in
computing capacities, network connections, and service costs,
the effectiveness of task offloading can be adversely affected
by instability in computing resources scheduling performance
if the combination of computing resources is randomly se-
lected without considering the benefits they can provide.
Third, most studies may struggle to provide an expandable
task offloading architecture to meet varying computing
power requirements. Throughout the task offloading process,
the computing resources available for the architecture will
keep invariable, and the corresponding scheduling algorithm
developed for the architecture follow a fixed task offloading
model, resulting in weak generality.

To address the above challenges, we introduce the concept
of edge computing power network (EdgeCPN), which
enables a fairly elastic integration and flexible scheduling
of fragmented computing resources in the CPN in response
to local user demand. An EdgeCPN is designed as an
autonomous unit of computing power (within the CPN), where
computation tasks offloaded from mobile devices can be pro-
cessed through site-autonomy or site-collaboration modes. It
operates independently in site-autonomy mode, or collaborates
with other EdgeCPNs in site-collaboration mode. The site-
collaboration mode allows an MEC site to collectively utilize
fragmented computing resources from other MEC sites to
meet the computing resources requirements of users. The main
contributions of this paper can be summarized as follows:

• We propose a new paradigm, the EdgeCPN, and establish
a flexible task offloading architecture to jointly schedule
computing resources across different MEC sites. This ar-
chitecture allows the site-autonomy mode to be extended
to the site-collaboration mode, efficiently alleviating the
problem of insufficient computing resources.

• To identify the most suitable computing resources for
computation tasks, we develop an on-demand comput-
ing resources scheduling model for task offloading in

EdgeCPNs. This model facilitates the optimal selection of
a subset of computing resources from the network based
on user requirement.

• For efficient and stable resource scheduling performance,
we decouple the search for task offloading problems in
EdgeCPNs into two stages and propose a two-stage effi-
cient evolutionary search scheme (TESA). By optimizing
the computing resources selection in stage-1 to improve
the corresponding searches in stage-2, the total delay of
task offloading can be significantly reduced.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the system
model and problem formulation. Section IV introduces the
proposed scheme in detail. Section V gives the analysis of
numerical results. Section VI concludes this paper.

II. RELATED WORK

A. Two or Three-level Task Offloading Architecture
Some efforts have been made to enhance computing re-

sources scheduling in MEC networks [28], [29], aimed at
dealing with task offloading problem and improving appli-
cation performance. Wang et al. [30] investigated a joint
computation task, spectrum, and transmission power allocation
problem in MEC networks, the objective of which is to
adjust the strategies of computation tasks and computing
resources allocation according to changes in computation tasks
to minimize computation and transmission delays among all
users. Zhang et al. [31] simultaneously considered the task
offloading problems in both single-cell and multi-cell MEC
networks, taking into account the residual energy of smart
devices’ batteries and jointly optimizing the allocation of
communication and computing resources under sensitive delay
conditions. However, these studies primarily resolve around
the device-edge two-level task offloading architectures within
a single MEC site. If the computing resources limitation of
the edge server is not taken into account, it may lead to

Fig. 1. Examples of task offloading architectures.

3

fierce computing resources competition among computation
tasks when the edge server is overloaded.

To alleviate this problem, many studies have considered the
cloud-assisted device-edge-cloud three-level task offloading
architectures, which can reduce the load on the edge server by
offloading part of the computation tasks to the cloud center.
Motivated by the synergistic effects of cloud center, static fog
and mobile fog in handling time-critical tasks, Liu et al. [32]
proposed a two-layer vehicular fog computing architecture
that collaboratively offloads computation tasks to different
nodes based on their classification characteristics. Feng et
al. [33] assumed that computation tasks can be partitioned
into multiple subtasks and can be executed on local devices,
MEC servers and cloud servers. They formulated the problem
of task partitioning and user association in MEC systems
and proposed a dual decomposition-based approach and a
matching-based approach to solve it. However, cloud-related
approaches introduce the risk of high communication latency.
As computation tasks are executed across the cloud centre
and the edge server, they need to traverse core network and
backbone network, leading to significant differences in appli-
cation response time. While both task offloading architectures
consider the vertical computing resources scheduling, they
may not make efficient utilization of computing resources in
the horizontal dimension.

B. MEC or CPN-based Task Offloading

There have been several studies that explored the use of
neighboring MEC sites’ computing resources to collabora-
tively improve task offloading, offering an effective solution
to mitigate the above challenges. Peng et al. [34] considered
a multi-server multi-user multi-task computation offloading
scenario in collaborative edge and cloud computing networks.
They formulated a constrained multi-objective computation
offloading model considering time and energy consumption
and proposed a multi-objective optimization algorithm based
on a push-pull search framework to search solutions. Laili
et al. [35] studied how to collaboratively execute intercon-
nected manufacturing and computation tasks in manufacturing
units, cloud resources, and edge resources. They proposed a
discretized soft actor-critic configured differential evolution
algorithm to obtain a robust scheme to the cloud-edge-device
collaborative task scheduling problem.

By integrating networking and computing, this concept
can be extended into a universal service: a unified supply
of computing resources based on CPNs. Tang et al. [24]
established a computing resources sharing platform in CPNs
that connects users and computing resources providers for
facilitating efficient computing resources scheduling, which
reduces the edge server’s reliance on the cloud center. Yao
et al. [36] proposed a computing-aware routing protocol in
CPNs to facilitate the coordinated optimization of network and
computing resources, where service requests can be scheduled
to the optimal service node along the network path. Hao et
al. [37] studied the task offloading problems in CPNs under
time-continuous conditions to further optimize the overall
waiting delay by reducing decision waiting time. Lu et al. [26]

modeled the wireless CPN for computing resources scheduling
in multiple MEC systems. They solved the task transfer
problem in the wireless CPN by unifying the scheduling of
computing resources from mobile devices and MEC sites. In
addition, Sun et al. [38] designed a task and resource-aware
federated learning model in WCPNs, which jointly optimizes
the computing strategies and collaboration mechanisms for
computing nodes to reduce the energy consumption. However,
most of the existing studies have not effectively considered the
problem of computing resources selection for task offloading
in CPNs that may lead to inefficient and unstable computing
resources scheduling performance.

In summary, compared to existing work, our approach prac-
tically addresses the resource selection process from the vast
and diverse resource pool of the CPN under the constraints of a
limited user budget for task offloading. The introduction of the
EdgeCPN concept supports both the site-autonomy and site-
collaboration modes, enabling the utilization of fragmented
computing resources outside the current EdgeCPN in CPNs.
This provides a flexible mechanism for on-demand scheduling
of computing resources. Then for matching the most appropri-
ate computing resources for computation tasks and reducing
the total delay of task offloading, we divide the search for task
offloading problems in EdgeCPNs into two stages and propose
a two-stage efficient evolutionary search scheme, considering
both the performance and cost requirements of users. Our
approach has the advantage of elastic integration and flexible
scheduling of fragmented computing resources throughout the
CPN in response to local user demand.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. On-demand Computing Resources Scheduling

As shown in Fig. 2, we design an on-demand computing
resources scheduling model for task offloading in EdgeCPNs,

TABLE I
MAIN NOTATIONS.

M The mobile device set in the current MEC site
Nm The computation task set of mobile device m

dm,n
The input data size of computation task n generated from
mobile device m

fm,n
The required CPU cycles of computation task n generated from
mobile device m

tm The maximum delay tolerance for mobile device m
cmd
m The computing power of mobile device m
Rm The transmission rate from mobile device m to the edge server
pm The transmission power from mobile device m to the edge server
hm The channel gain between mobile device m and the edge server
σ2 The noise power
ω The pathloss constant
λ The pathloss exponent
ces The computing power of the edge server
K The set of optional MEC sites in EdgeCPNs
cms
k The available computing power of external MEC site k

rk
The transmission rate from the current MEC site to external
MEC site k

uk The rental cost of external MEC site k
U The user budget
S A subset of computing resources selected from K
Q(S) The total gain of computing resources subset S
C(S) The total cost of computing resources subset S
α, β Two weight factors.

4

Fig. 2. Task offloading in EdgeCPNs.

Fig. 3. Computing resources scheduling process.

which aims to search for the most appropriate computing
resources from the network to match user demand.

Mobile devices within the current MEC site’s coverage can
offload their computation tasks to the edge server over the
wireless channel, for the purpose of improving application
response time. However, with the growth of mobile devices
and computation tasks, the load on one edge server may
be rising rapidly, ultimately leading to unacceptable latency
levels. In CPNs, there are a large number of geographically
distributed MEC sites, some of which may remain underloaded
or idle. Therefore, the restriction of computing resources
within the current MEC sites can be relieved by integrating and
scheduling the fragmented computing resources from external
MEC sites. In this case, a portion of the computation tasks
can be transferred to external MEC sites for execution.

To this end, an EdgeCPN is considered as an autonomous
unit of computing power within the CPN, where computation

tasks offloaded from mobile devices can be processed through
site-autonomy or site-collaboration modes. Specifically, the
site-autonomy mode refers to scheduling computing resources
within the current MEC site of the EdgeCPN to perform
task offloading without relying on external MEC sites. When
internal computing resources are not sufficient for computation
tasks from mobile devices, it can request additional computing
resources from external MEC sites according to the user
demand. Therefore, task offloading in the site-collaboration
mode involves the joint utilization of internal and exter-
nal computing resources. Due to the diversity of external
computing resources, they must be appropriately selected to
improve the computing resources scheduling performance for
task offloading.

As illustrated in Fig. 3, the computing resources scheduling
process in EdgeCPNs is given. First, the computing resources
scheduler receives user demand and builds an empty comput-
ing resources pool. Second, the computing resources scheduler
senses the status of external MEC sites distributed in the
network, such as their available computing resources and rental
cost, as well as the transmission rates between the current
MEC site and them. Third, the computing resources scheduler
selects a portion of external MEC sites from the network based
on the user budget. The computing resources of selected MEC
sites are aggregated into the computing resources pool. Finally,
the available computing resources in the computing resources
pool are mapped as external computing resources, which are
utilized in combination with internal computing resources to
enable task offloading. The following is the detailed descrip-
tion of the system model and problem formulation. For easy
reading, Table I summarises the main notations used in this
section.

5

B. Site-autonomy Mode

In site-autonomy mode, the task offloading problem in-
cludes the search of the task offloading decisions and the com-
puting resources allocations under the computing resources
restriction of the current MEC site.

We use M = {1, 2, ...,M} to denote the mobile device
set in the current MEC site. The mobile device m has a
computation task set Nm = {1, 2, ..., Nm} that need to be
executed. The input data size and the required CPU cycles
of computation task n generated from mobile device m are
represented as dm,n and fm,n, respectively. The maximum
delay tolerance for mobile device m is denoted as tm. When
the computing power of mobile device m cannot meet the
latency requirements, it can initiate a request to the edge server
deployed at the current MEC site to offload compute-intensive
computation tasks.

Given task offloading decision xm,n ∈ {0, 1}, where
xm,n = 0 indicates that the computation task n generated
from mobile device m is executed at the mobile device m
and xm,n = 1 indicates that the computation task n generated
from mobile device m is executed on the edge server. We
assume computation tasks left at the mobile device m need
to be executed serially, while computation tasks offloaded to
the edge server can be executed in parallel. Due to the size
of the computation result is much smaller than the size of the
input data, the return delay of computation result is ignored
[39]. Thus, the total delay of task offloading in site-autonomy
mode consists of mobile device execution delay, edge server
transmission delay, and edge server execution delay.

Let cmd
m denote the computing power of mobile device m,

measured in CPU frequency. The mobile device execution
delay can be calculated by:

Tmd
m =

∑
n∈L1

fm,n

cmd
m

;L1 = {n|xm,n = 0} (1)

Through wireless transmission [25], mobile device m can
offload its computation tasks to the edge server. Following
from Shannon’s channel capacity formulation, the transmis-
sion rate from mobile device m to the edge server can be
mathematically as:

Rm = B log2(1 +
pmhm

σ2
) (2)

where B is the bandwidth allocated to mobile device m, pm is
the transmission power, hm is the channel gain, and σ2 is the
noise power. We assume the wireless channel to be dominated
by line-of-sight component, where the channel gain can be
expressed as:

hm = ω(
l0
lm

)λ (3)

where ω is a pathloss constant, λ is the pathloss exponent, l0
is a reference distance, and lm is the distance between mobile
device m and the edge server.

The edge server transmission delay can be calculated by:

Tme
m =

∑
n∈L2

dm,n

Rm
;L2 = {n|xm,n > 0} (4)

Note that computation tasks need to be fully transmitted before
they can be executed by the edge server.

Let ces denote the computing power of the edge server
that can be shared by offloaded computation tasks. Given
computing resources allocation ym,n ∈ [0, ces], the edge server
execution delay can be expressed by:

T es
m = max

n∈L2

fm,n

ym,n
;L2 = {n|xm,n > 0} (5)

Therefore, the total delay required to complete the computation
tasks of mobile device m can be calculated by:

TSA
m = max{Tmd

m ;Tme
m + T es

m } (6)

The task offloading problem in the site-autonomy mode
involves the optimization of the following decision variables: i)
task offloading decision xm,n ∈ {0, 1}, is a binary variable; ii)
computing resources allocation ym,n ∈ [0, ces], is a continuous
variable. With the goal of minimizing the total delay for
all mobile devices, the task offloading problem in the site-
autonomy mode can be defined as:

P1 : min
xm,n,ym,n

∑
m∈M

TSA
m (7)

s.t. xm,n ∈ {0, 1},∀m,∀n (8)

ym,n ∈ [0, ces],∀m,∀n (9)

TSA
m ≤ tm,∀m (10)∑

m∈M

∑
n∈Nm

xm,nym,n ≤ ces (11)

C. Site-collaboration Mode

In site-collaboration mode, the search of the task offloading
problem is decoupled into two stages, where stage-1 opti-
mizes the computing resources selection, and stage-2 jointly
optimizes the task offloading decisions and the computing
resources allocations based on the computing resources iden-
tified in stage-1.

Stage-1: Computing Resources Selection. We use K =
{1, 2, ...,K} to denote the optional computing resources set
consisting of external MEC sites in EdgeCPNs. The available
computing resources and the rental cost of external MEC site
k are denoted as cms

k and uk, respectively. The transmission
rate from the current MEC site to external MEC site k is
denoted as rk. Considering the diversity of optional computing
resources set in EdgeCPNs, the value of K is usually large,
leading to a large search space for the task offloading problem
and struggling to obtain stable computing resources scheduling
performance for task offloading. Therefore, we first formu-
late the computing resources selection of the task offloading
problem as a subset selection problem, and then the selected
computing resources subset is used as the search space for
task offloading decisions and computing resources allocations
of the task offloading problem.

Let U denote the user budget, the computing resources
selection of the task offloading problem aims to search a
computing resources subset S = {1, 2, ..., S} from K with

6

the highest gain. The total gain of the selected computing
resources subset S can be expressed as:

Q(S) =
∑

s∈S⊆K

αrs + βcms
s (12)

where cms
s denotes the available computing resources of

selected MEC site s, rs denotes the transmission rate from
the current MEC site to selected MEC site s, α and β are two
weight factors that satisfy α+ β = 1.

In addition, the total cost of the selected computing re-
sources subset S can be expressed as:

C(S) =
∑

s∈S⊆K

us (13)

where the total cost should not exceed the user budget U , i.e.,
C(S) ≤ U .

Therefore, the computing resources selection of the task of-
floading problem in site-collaboration mode can be formulated
as:

P2-1 : max
S⊆K

Q(S) (14)

s.t. C(S) ≤ U (15)

Stage-2: Task Offloading Decisions and Computing
Resources Allocations. As can be seen from above, the
set of computing resources that can be used to offload
computation tasks from mobile devices can be denoted as
V = {1, 2, ..., V = S + 1}, which includes the current MEC
site and the external MEC sites in computing resources subset
S.

For a given set of V , the task offloading decision of
computation task n generated from mobile device m can be
extended to zm,n ∈ {0, 1, 2, ..., V }, where zm,n = 0 indicates
that the computation task n generated from mobile device m
is executed at the mobile device m, zm,n = 1 indicates that
the computation task n generated from mobile device m is
executed on the edge server in the current MEC site, and
zm,n > 1 indicates that the computation task n generated
from mobile device m is transferred to external MEC sites
in EdgeCPNs for execution. We suppose that the return delay
of computation result is ignored. Thus, the total delay of task
offloading in site-collaboration mode consists of mobile device
execution delay, edge server transmission delay, edge server
execution delay, external MEC site transmission delay, and
external MEC site execution delay.

Similarly, the mobile device execution delay can be repre-
sented as:

Tmd
m =

∑
n∈L3

fm,n

cmd
m

;L3 = {n|zm,n = 0} (16)

The edge server transmission delay can be represented as:

Tme
m =

∑
n∈L4

dm,n

Rm
;L4 = {n|zm,n > 0} (17)

Let ccnv denote the computing power of MEC site v, where
ccnv ∈ {ces, cms

1 , cms
2 , ..., cms

s }. Given computing resources

allocation wm,n,v ∈ [0, ccnv], the edge server execution delay
can be expressed by:

T es
m = max

n∈L5

fm,n

wm,n,v
;L5 = {n|zm,n = 1}, v = 1 (18)

The external MEC site transmission delay can be calculated
as:

T em
m,s =

∑
n∈L6

dm,n

rs
;L6 = {n|zm,n = s+ 1} (19)

The external MEC site execution delay can be calculated
by:

Tms
m,s = max

n∈L6

fm,n

wm,n,s+1
;L6 = {n|zm,n = s+ 1} (20)

The delay of offloading computation task from the current
MEC site to the external MEC site can be expressed as:

T ad
m = max

s∈S
{

M∑
m=1

T em
m,s + Tms

m,s} (21)

Therefore, the total delay required to complete the compu-
tation tasks of mobile device m can be represented as:

TSC
m = max{Tmd

m , Tme
m + T es

m , Tme
m + T ad

m } (22)

The task offloading problem in the site-collaboration mode
involves the optimization of the following decision variables: i)
computing resources selection s ∈ S ⊆ K, is a binary variable;
ii) task offloading decision zm,n ∈ {0, 1, 2, ..., V }, is a integer
variable; iii) computing resources allocation wm,n,v ∈ [0, ccnv],
is a continuous variable. Thus, following P2-1, the objective of
stage-2 of the task offloading problem in the site-collaboration
mode is to minimize the total delay for all mobile devices,
which can be defined as:

P2-2 : min
zm,n,wm,n,v

M∑
m=1

TSC
m (23)

s.t. zm,n ∈ {0, 1, 2, ..., V = S + 1},∀m,∀n (24)

wm,n,v ∈ [0, ccnv],∀m,∀n,∀v (25)

TSC
m ≤ tm,∀m (26)∑

m∈M

∑
n∈Nm

zm,nwm,n,v ≤ ccnv ,∀v (27)

IV. TWO-STAGE EVOLUTIONARY SEARCH

A. Overall Framework

We develop an efficient two-stage evolutionary search
scheme to solve the task offloading problems in EdgeCPNs.
The search for task offloading problem is decoupled into
two stages, where stage-1 search the computing resources
selection and stage-2 search the task offloading decisions
and the computing resources allocations. Both stages employ
the evolutionary computation [40], [41] methods to produce
corresponding solutions.

The overall framework of the proposed scheme is shown in
Fig. 4. In stage-1, the search process consists of four parts:
initialization, evaluation, mutation and selection. To optimize

7

the computing resources selection, a computing resources
subset is selected to maximize the total gain under user
budget constraint. The output of the stage-1 can be used
as the input for the stage-2. If the output of stage-1 for
problem P2-1 is an empty set, stage-2 focuses on solving
problem P1, otherwise, problem P2-2 is solved. In stage-2,
the search process is composed of five parts: initialization,
evaluation, crossover, mutation and selection. To optimize the
task offloading decisions and computing resources allocations
to minimize the total delay, the internal and external computing
resources need to be jointly scheduled.

B. Computing Resources Selection

As shown in Algorithm 1, we propose a computing re-
sources selection method to search the optimal computing
resources subset. A computing resources subset S ⊆ K can be
represented by a boolean vector {0, 1}K , where 0K denotes
an empty set. Similar to [42], a surrogate objective function
that simultaneously takes total gain and total cost into account
is introduced, which can be expressed as:

H(S) =

{
Q(S), S = 0

Q(S)/(1− e−λQC(S)/U), S > 0
(28)

where λQ is the submodularity ratio of the original objective
function. A large value of the surrogate objective function
indicates a smaller total cost and larger total gain.

During the evolutionary process, a population of individuals
is maintained. Each individual represents a set of computing
resources to be selected, where the computing resources la-
belled as 1 constitute a candidate computing resources subset.
First, the population is initialized with a single individual,
which represents an empty set. Then, the offspring individuals
are produced via a bit-wise mutation operator. For a randomly
selected individual of the population, the bit-wise mutation
operator generates its offspring individual by flipping each

Algorithm 1 Computing resources selection
Input: the optional computing resources set K, the user

budget U , the objective function P2-1
Output: the computing resources subset S

1: Initialize population P = {p1}, where p1 = 0K ;
2: Let h0 = q0 = 0K , and t = 0;
3: while t < T do
4: Randomly Select a individual prd from P ;
5: Generate p′ from prd via bit-wise mutation operator;
6: if C(p′) ≤ U then
7: Let L = |p′|;
8: if cmp(L) = ∅ then
9: P = P ∪ {p′}, hL = p′, and qL = p′;

10: else
11: if H(p′) ≥ H(hL) then
12: hL = p′;
13: end if
14: if Q(p′) ≥ Q(qL) then
15: qL = p′;
16: end if
17: Let O = P \ cmp(L);
18: Update population P = O ∪ {hL} ∪ {qL};
19: end if
20: end if
21: t = t+ 1;
22: end while
23: return pbest with the maximum objective value;

bit of the selected individual independently with probability
1/K, where K is the size of set K. When a new individual
is generated, the fitness of the individual is evaluated by
calculating corresponding total cost, total gain, and surrogate.
Note that it must guaranteed that the user budget constraint is
satisfied at any time of the individual evaluation. The offspring
individual is compared only with the existing individuals in

Fig. 4. Overall framework of the proposed scheme.

8

the population which have the same size as it. After several
iterations, the individual with the maximum objective value of
objective function P2-1 is output as the computing resources
set.

C. Task Offloading Decision and Computing Resources Allo-
cations

As shown in Algorithm 2, we propose a task offloading de-
cision and computing resources allocation method to optimize
the joint use of internal and external computing resources.
Each individual in the population represents a complete so-
lution to the task offloading problem, which can be decoded
into two parts, with half of the individual representing the task
offloading decision vector and the another half representing
the computing resources allocation vector. The best solution
obtained from Algorithm 1 is used as one of the inputs
to Algorithm 2 to reduce search space and improve search
efficiency.

At the beginning of the evolutionary process, NP indi-
viduals are randomly initialized according to the computing
resources subset S obtained in Algorithm 1. Then, the fit-
ness of each individual is calculated during the individual
evaluation. In each iteration, the worst and oldest individuals
in the population are removed to reduce negative guidance.
As their replacement, a randomly generated individual is
added to the population to maintain diversity. To produce
new individuals, we randomly select two individuals from
the current population as parent individuals. By applying a
binary crossover operator and a polynomial mutation operator
[43], [44], two offspring individuals can be generated. All
offspring individuals are added to the offspring population
and evaluated. After that, we use a elite selection opera-
tor to select the individuals with good fitness from current
population and offspring population to the next generation
[45]. Ultimately, the individual with the minimum objective
value is output as the task offloading decisions and computing
resources allocations for computation tasks. The proposed two-
stage evolutionary search scheme provides a flexible way to
deal with the task offloading problems in EdgeCPNs. If the
computing resources subset found in stage-1 is the empty set,
the solution to problem P1 can be obtained, otherwise the
solution to problem P2-2 can be obtained.

D. Complexity Analysis

For the proposed two-stage evolutionary search scheme, the
objective of computing resources selection in stage-1 is to
identify a computing resources subset that has maximized total
gain and whose total cost is no greater than the user budget.
This problem has been proven to be NP-Hard. Within each
iteration of Algorithm 1, we randomly select an individual
prd from the current population whose offspring individual
p′ is generated via a bit-wise mutation operator. Since the
individual has dimension K, the complexity of applying the
mutation operation to it can be denoted as O(K). The total
number of iterations of Algorithm 1 is T , the time complexity
of computing resources selection in stage-1 is O(T ∗K).

Algorithm 2 Task offloading Decision and computing re-
sources allocation
Input: the computing resources subset S, the population size

NP , the objective function P1 (S = ∅), the objective
function P2-2 (S ≠ ∅)

Output: the task offloading decisions and the computing
resources allocations for computation tasks

1: Randomly initialize population P = {p1, p2, ...pNP };
2: Let t = 0;
3: for i = 1 to NP do
4: Evaluate individual pi;
5: end for
6: while t < T do
7: P = P − {pworst} − {poldest} ∪ {prd};
8: Let O = ∅;
9: for i = 1 to NP/2 do

10: Randomly select two parent individuals pp1 and pp2
from P ;

11: Generate two offspring individuals pc1 and pc2 from pp1
and pp2 via simulated binary crossover and polynomial
mutation operators;

12: Evaluate offspring individuals pc1 and pc2;
13: O = O ∪ {pc1, pc2};
14: end for
15: Select NP individuals from (O ∪ P) to P via elite

selection operator;
16: t = t+ 1
17: end while
18: return pbest with the minimum objective value;

Based on the computing resources subset identified in stage-
1, the task offloading decision and the computing resources
allocation are jointly optimized to minimize the total delay
in stage-2, and also NP-Hard. In the initialization step, NP
individuals of dimension M ∗N are evaluated, the complexity
of the evaluation operation can be denoted as O[NP ∗M ∗N].
In the main cycle, individuals in the current population un-
dergo crossover and mutation operations to produce offspring
individuals. The binary crossover operator is used to generate
NP offspring individuals of dimension M ∗ N with a com-
plexity of O(NP ∗M ∗N). Similarly, the polynomial mutation
operator has a certain probability of being applied to offspring
individuals, its complexity can be denoted as O(NP ∗M ∗N).
After that, NP offspring individuals of dimension M ∗ N
are evaluated with a complexity of O(NP ∗ M ∗ N). The
complexity of selecting NP individuals from the current pop-
ulation to the next generation is denoted as O(NP). The total
number of iterations of Algorithm 2 is T , the time complexity
of task offloading decision and computing resources allocation
in stage-2 is O(T ∗NP ∗M ∗N).

V. NUMERICAL RESULTS

A. Setup

Based on the system model and problem formulation in-
troduced in Section III, we set up the computing power
of each mobile device to be uniformly distributed between

9

[0.5 ∗ 109, 1.5 ∗ 109] GHz. The transmission power of each
mobile device is set to 300 mW. The bandwidth allocated to
each mobile device is set to 2 MHz. The noise power is −75
dBm. The input data size and the required CPU cycles of
each computation task are randomly generated between [400,
1000] KB and [0.1 ∗ 109, 1.0 ∗ 109] cycles. An edge server
with computing power of 20 GHz is equipped in the current
MEC site. In addition, we set up 100 external MEC site in
EdgeCPNs. The available computing resources and the rental
cost of each of the external MEC site are randomly distributed
in the range of [5, 15] GHz and [10, 100]. The transmission
rates from the current MEC site to external MEC sites are
randomly set to [10, 20] Mbps.

To evaluate the effectiveness of the proposed two-stage evo-
lutionary search scheme, the comparison methods are shown
below:

• CTMD: For all m ∈ M and n ∈ Nm, the task
offloading decision xm,n is set to 0. This indicates that
all computation tasks are executed at the mobile devices.

• CTES: For all m ∈ M and n ∈ Nm, the task
offloading decision xm,n is set to 1. This indicates that
all computation tasks are executed at the edge server in
the current MEC site.

• CTRD: For all m ∈ M and n ∈ Nm, the task offloading
decision xm,n is randomly set to 1 or 0. This indicates
that the computation tasks can be randomly executed at
the mobile devices or on the edge server in the current
MEC site.

• TESA-P1: The computing resources subset S is an empty
set. This suggests that the computation tasks offloaded
from mobile devices are processed through site-autonomy
mode, which schedules computing resources within the
current MEC site to solve task offloading problem P1.

• TESA-P2: The computing resources subset S searched
in the stage-1 is not the empty set. This suggests that
the computation tasks offloaded from mobile devices
are processed through site-collaboration mode, in which
computing resources within the current MEC site and
from the computing resources subset are jointly scheduled
to solve task offloading problem P2.

• SSES: Without considering the process of computing
resource selection, it uses a single-stage search scheme
to optimize task offloading decisions and computing
resource allocations for the task offloading problem in
EdgeCPNs.

• RDMS: Similar to the proposed method, it is a two-
stage search scheme. The difference is that it randomly
identifies a computing resources subset in the the process
of computing resources selection.

• GCCA: A meta-heuristic algorithm using a single-stage
search scheme [46], which is designed to solve the task
offloading problem in resource-constrained environments.

B. Evaluation of Task Offloading

Fig. 5 presents the total delay obtained by the four compar-
ison methods under different numbers of mobile devices. It
shows that TESA-P1 method outperforms the other methods

in all problem instances. For the CTRD method, due to the ir-
rational utilization of the computing resources, which results in
the worst delay performance. In most cases, the CTES method
achieves better delay performance than the CTMD method by
offloading computation tasks to the edge server within the
current MEC site. However, the delay performance of the
CTES method degrades rapidly as the size of the problem
instance increases. This means that overloaded computation
tasks on the edge server can lead to intense competition for
computing resources. Fig. 6 shows the total delay achieved
by the four comparison methods for different numbers of
computation tasks. Although the delay performance of the
TESA-P1 method is better than both the CTMD and CTES
methods, its advantages are not very obvious. As the number
of computation tasks increases, the execution delay of the
mobile device increases. This will force more computation
tasks to be uploaded to the edge server for execution. Since
the computing resources of the edge server within the current
MEC site are non-expandable, the delay performance of the
TESA-P1 method is limited.

When the user budget is given, the GCCA method, the SSES
method, the RDMS method, and the TESA-P2 method are able
to provide additional computing resources for task offloading.
Fig. 7 presents the total delay versus the number of mobile
devices. When the available computing resources increases,
it can result in additional transmission delay by offloading
computation tasks to external MEC sites. Meanwhile, the
increase in computing resources can also reduce the execution
delay of computation tasks. The TESA-P2 achieves the best
delay performance by providing on-demand scheduling of
computing resources. Its advantage is that it can select the
most appropriate MEC sites from the network for collaborative
task offloading. The delay performance of RDMS method is
almost the same as that of SSES method when the instance
with a large number of mobile devices. This indicates that
the computing resources selection is what largely influences
the effectiveness of task offloading. Meanwhile, the GCCA
method shows better search efficiency compared to SSES
and RDMS methods. Fig. 8 shows the total delay versus
the number of computation tasks. It can be seen that the
total delay of the SSES method and the GCCA method
gradually outperform the RDMS method when the number
of computation tasks increases. Because the RDMS method
performs a random search for computing resources selection
of the task offloading problem, it leads to a less efficient
computing resources scheduling performance.

C. Analysis of Computing Resources Scheduling

Different computing resources scheduling performance can
be obtained when different user demands are set. Fig. 9 shows
the total delay obtained by the four comparison methods under
different user budgets. It can be observed that the delay per-
formance of TESA-P2 method is significantly better than that
of GCCA, SSES and RDMS methods. This demonstrates that
the TESA-P2 method has excellent performance in scheduling
computing resources from the network. On the contrary, the
SSES method performs a single-stage search for the task

10

5 10 15 20 25 30
0

20

40

60

80

100

Number of mobile devices

T
o

ta
l

d
el

ay

CTMD

CTES

CTRD

TESA−P1

Fig. 5. Total delay of P1 under different numbers of mobile devices.

20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

Number of computation tasks

T
o

ta
l

d
el

ay

CTMD

CTES

CTRD

TESA−P1

Fig. 6. Total delay of P1 under different numbers of computation tasks.

35 40 45 50 55 60
0

50

100

150

200

Number of mobile devices

T
o

ta
l

d
el

ay

GCCA

SSES

RDMS

TESA−P2

Fig. 7. Total delay of P2 under different numbers of mobile devices.

50 100 150 200 250 300
0

50

100

150

200

250

Number of computation tasks

T
o

ta
l

d
el

ay

GCCA

SSES

RDMS

TESA−P2

Fig. 8. Total delay of P2 under different numbers of computation tasks.

100 200 300 400 500 600
50

60

70

80

90

100

110

120

130

User budget

T
o

ta
l

d
el

ay

GCCA

SSES

RDMS

TESA−P2

Fig. 9. Total delay with different user budgets.

100 200 300 400 500 600
0

5

10

15

20

25

N
u

m
b

er
 o

f
se

le
ct

ed
 M

E
C

 s
it

es

User budget

GCCA

SSES

RDMS

TESA−P2

Fig. 10. Size of computing resources subset with different user budgets.

11

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

C
o
m

p
le

ti
o
n
 r

at
e

o
f

co
m

p
u
ta

ti
o
n
 t

as
k
s

User budget

GCCA

SSES

RDMS

TESA−P2

Fig. 11. Completion rate of computation tasks with different user budgets.

offloading problems in EdgeCPNs, which yields inefficient
scheduling performance for computing resources. The RDMS
method suffers from an unstable scheduling performance of
computing resources as it fails to find the most appropriate
computing resources subset in the search of the stage-1. The
GCCA method performs better than the SSES method and the
RDMS method, but with instability.

Fig. 10 shows the number of selected MEC sites obtained
by the four comparison methods under different user budgets
and Fig. 11 gives the corresponding completion rate of com-
putation tasks. In the first case, the SSES method selected
more MEC sites than the GCCA method, yet obtained a
lower completion rate of computation tasks. This indicates
that the SSES methods do not make sufficient utilization of
the fragmented computing resources in EdgeCPNs. Although
the TESA-P2 method selects fewer MEC sites than the SSES
method, it achieves a more efficient computing resources
scheduling performance based on the computing resources
subset found in stage-1. In addition, the TESA-P2 method

showed the best completion rate of computation tasks in
all cases. The RDMS method randomly selects a subset of
computing resources in stage-1, whose completion rate of
computation tasks is limited by the selection of inappropriate
computing resources.

Fig. 12 presents the total delay obtained by the four com-
parison methods under different numbers of external MEC
sites in EdgeCPNs. We observe that the delay performances
of the SSES and RDMS methods are instability. When the
number of external MEC sites in EdgeCPNs increases, the
search space for the task offloading problem becomes larger.
For the SSES method, it is difficult to obtain efficient task
offloading decisions and computing resources allocations for
computation tasks from a large-scale search space based on a
single-stage search. Although the GCCA method also suffers
from instability, its delay performance is significantly better
than that of the SSES and RDMS methods. In the TESA-
P2 method, by decoupling the task offloading problems in
EdgeCPNs into two stages, the search for computing resources
selection in stage-1 can reduce the difficulty of searching
for task offloading decisions and computing resources allo-
cations in stage-2. For the RDMS method, it is not able to
obtain an appropriate computing resources subset in the search
for computing resources selection in stage-1. The TESA-P2
method can greatly improve the computing resources schedul-
ing performance by considering the total cost and total gain
of the selected computing resources subset. Fig. 13 shows the
convergence trend obtained by the four comparison methods
during the evolutionary process. It can be seen that the TESA-
P2 method obtains better convergence performance than the
GCCA, SSES, and the RDMS methods. This again validates
the importance in solving the computing resources selection of
task offloading problems and the effectiveness of the proposed
two-stage evolutionary search scheme.

VI. CONCLUTION

In this paper, we introduced the concept of edge computing
power network (EdgeCPN) to efficiently utilize fragmented

20 40 60 80 100 120
40

50

60

70

80

90

100

110

Number of external MEC sites

T
o

ta
l

d
el

ay

GCCA

SSES

RDMS

TESA−P2

Fig. 12. Total delay under different numbers of external MEC sites.

100 150 200 250 300 350 400
60

80

100

120

140

160

180

Generations

T
o

ta
l

d
el

ay

GCCA

SSES

RDMS

TESA−P2

Fig. 13. Convergence trend of different comparison algorithms.

12

computing resources across different MEC sites in CPNs.
For the task offloading problems in EdgeCPNs, in addition
to optimizing the task offloading decisions and computing
resources allocations, we also considered the optimization for
computing resources selection. To this end, we designed an
on-demand computing resources scheduling model for task
offloading in EdgeCPNs to improve the performance of com-
puting resources scheduling. Building on this foundation, we
decouple the search for task offloading problems in EdgeCPNs
into two stages, where stage-1 solves computing resources
selection by searching a computing resources subset with
the highest gain under user budget constraint, and stage-2
concurrently solves task offloading decisions and computing
resources allocations according to the computing resources
subset found in stage-1.

Our scheme is applicable not only to existing MEC network
scenarios but also to emerging CPN scenarios. In particular,
computing resources selection can be regarded as a general
strategy for task offloading in CPNs. In the future, computing
resources are organically associated with network resources.
This enables users to weigh the performance and cost to
determine the appropriate computing resources from a huge
pool of computing resources to meet their diverse needs.

REFERENCES

[1] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Dis-
tributed artificial intelligence empowered by end-edge-cloud computing:
A survey,” IEEE Communications Surveys Tutorials, vol. 25, no. 1, pp.
591–624, 2023.

[2] S. Duan, F. Lyu, H. Wu, W. Chen, H. Lu, Z. Dong, and X. Shen, “Moto:
Mobility-aware online task offloading with adaptive load balancing in
small-cell mec,” IEEE Transactions on Mobile Computing, vol. 23, no. 1,
pp. 645–659, 2024.

[3] Z. Gao, L. Yang, and Y. Dai, “Large-scale cooperative task offloading
and resource allocation in heterogeneous mec systems via multiagent
reinforcement learning,” IEEE Internet of Things Journal, vol. 11, no. 2,
pp. 2303–2321, 2024.

[4] F. Lyu, J. Ren, N. Cheng, P. Yang, M. Li, Y. Zhang, and X. S. Shen,
“Lead: Large-scale edge cache deployment based on spatio-temporal
wifi traffic statistics,” IEEE Transactions on Mobile Computing, vol. 20,
no. 8, pp. 2607–2623, 2021.

[5] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey
of mobile cloud computing application models,” IEEE Communications
Surveys Tutorials, vol. 16, no. 1, pp. 393–413, 2014.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[7] Y. Ren, S. Shen, Y. Ju, X. Wang, W. Wang, and V. C. Leung,
“Edgematrix: A resources redefined edge-cloud system for prioritized
services,” in IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications, 2022, pp. 610–619.

[8] C. Zhang, C. Hu, T. Wu, L. Zhu, and X. Liu, “Achieving efficient and
privacy-preserving neural network training and prediction in cloud en-
vironments,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 5, pp. 4245–4257, 2023.

[9] C. Hu, C. Zhang, D. Lei, T. Wu, X. Liu, and L. Zhu, “Achieving privacy-
preserving and verifiable support vector machine training in the cloud,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
3476–3491, 2023.

[10] C. Yang, S. Lan, L. Wang, W. Shen, and G. G. Q. Huang, “Big data
driven edge-cloud collaboration architecture for cloud manufacturing: A
software defined perspective,” IEEE Access, vol. 8, pp. 45 938–45 950,
2020.

[11] C. Yang, S. Lan, Z. Zhao, M. Zhang, W. Wu, and G. Q. Huang,
“Edge-cloud blockchain and ioe-enabled quality management platform
for perishable supply chain logistics,” IEEE Internet of Things Journal,
vol. 10, no. 4, pp. 3264–3275, 2023.

[12] C. Yang, Q. Chen, Z. Zhu, Z.-A. Huang, S. Lan, and L. Zhu, “Evolu-
tionary multitasking for costly task offloading in mobile edge computing
networks,” IEEE Transactions on Evolutionary Computation, pp. 1–1,
2023.

[13] S. Bebortta, D. Senapati, C. R. Panigrahi, and B. Pati, “Adaptive
performance modeling framework for qos-aware offloading in mec-based
iiot systems,” IEEE Internet of Things Journal, vol. 9, no. 12, pp.
10 162–10 171, 2022.

[14] Y. Ye, L. Shi, X. Chu, R. Q. Hu, and G. Lu, “Resource allocation in
backscatter-assisted wireless powered mec networks with limited mec
computation capacity,” IEEE Transactions on Wireless Communications,
vol. 21, no. 12, pp. 10 678–10 694, 2022.

[15] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and X. Shen,
“Auction: Automated and quality-aware client selection framework for
efficient federated learning,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 8, pp. 1996–2009, 2022.

[16] C. Zhang, X. Luo, J. Liang, X. Liu, L. Zhu, and S. Guo, “Pota:
Privacy-preserving online multi-task assignment with path planning,”
IEEE Transactions on Mobile Computing, pp. 1–13, 2023.

[17] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[18] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online framework for joint
network selection and service placement in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 11, pp. 3836–
3851, 2022.

[19] P. Wang, K. Li, B. Xiao, and K. Li, “Multiobjective optimization for joint
task offloading, power assignment, and resource allocation in mobile
edge computing,” IEEE Internet of Things Journal, vol. 9, no. 14, pp.
11 737–11 748, 2022.

[20] Z. Wang, Z. Zhou, H. Zhang, G. Zhang, H. Ding, and A. Farouk, “Ai-
based cloud-edge-device collaboration in 6g space-air-ground integrated
power iot,” IEEE Wireless Communications, vol. 29, no. 1, pp. 16–23,
2022.

[21] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[22] S. Long, Y. Zhang, Q. Deng, T. Pei, J. Ouyang, and Z. Xia, “An
efficient task offloading approach based on multi-objective evolutionary
algorithm in cloud-edge collaborative environment,” IEEE Transactions
on Network Science and Engineering, vol. 10, no. 2, pp. 645–657, 2023.

[23] C. Yang, Y. Wang, S. Lan, L. Wang, W. Shen, and G. Q. Huang,
“Cloud-edge-device collaboration mechanisms of deep learning models
for smart robots in mass personalization,” Robotics Comput. Integr.
Manuf., vol. 77, p. 102351, 2022.

[24] X. Tang, C. Cao, Y. Wang, S. Zhang, Y. Liu, M. Li, and T. He, “Comput-
ing power network: The architecture of convergence of computing and
networking towards 6g requirement,” China Communications, vol. 18,
no. 2, pp. 175–185, 2021.

[25] Y. Zhang, C. Cao, X. Tang, R. Pang, S. Wang, and X. Wen, “Pro-
grammable service system based on sidaas in computing power net-
work,” in 2022 5th International Conference on Hot Information-Centric
Networking (HotICN), 2022, pp. 67–71.

[26] Y. Lu, B. Ai, Z. Zhong, and Y. Zhang, “Energy-efficient task transfer in
wireless computing power networks,” IEEE Internet of Things Journal,
vol. 10, no. 11, pp. 9353–9365, 2023.

[27] J. Li, H. Lv, B. Lei, and Y. Xie, “A computing power resource modeling
approach for computing power network,” in 2022 International Confer-
ence on Computer Communications and Networks (ICCCN), 2022, pp.
1–2.

[28] Q. Shen, B.-J. Hu, and E. Xia, “Dependency-aware task offloading and
service caching in vehicular edge computing,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 12, pp. 13 182–13 197, 2022.

[29] J. Feng, Q. Pei, F. R. Yu, X. Chu, and B. Shang, “Computation offloading
and resource allocation for wireless powered mobile edge computing
with latency constraint,” IEEE Wireless Communications Letters, vol. 8,
no. 5, pp. 1320–1323, 2019.

[30] S. Wang, M. Chen, X. Liu, C. Yin, S. Cui, and H. Vincent Poor, “A
machine learning approach for task and resource allocation in mobile-
edge computing-based networks,” IEEE Internet of Things Journal,
vol. 8, no. 3, pp. 1358–1372, 2021.

[31] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2018.

13

[32] C. Liu, K. Liu, S. Guo, R. Xie, V. C. S. Lee, and S. H. Son, “Adaptive
offloading for time-critical tasks in heterogeneous internet of vehicles,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7999–8011, 2020.

[33] M. Feng, M. Krunz, and W. Zhang, “Joint task partitioning and user as-
sociation for latency minimization in mobile edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8108–
8121, 2021.

[34] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained multiobjective
optimization for iot-enabled computation offloading in collaborative
edge and cloud computing,” IEEE Internet of Things Journal, vol. 8,
no. 17, pp. 13 723–13 736, 2021.

[35] Y. Laili, X. Wang, L. Zhang, and L. Ren, “Dsac-configured differential
evolution for cloud-edge-device collaborative task scheduling,” IEEE
Transactions on Industrial Informatics, pp. 1–11, 2023.

[36] H. Yao, X. Duan, and Y. Fu, “A computing-aware routing protocol for
computing force network,” in 2022 International Conference on Service
Science (ICSS), 2022, pp. 137–141.

[37] H. Hao, S. Yang, and W. Zhang, “Time-continuous computing task
offloading mechanism for computing and network convergence,” Journal
of Computer Research and Development, vol. 60, no. 4, pp. 735–749,
2023.

[38] W. Sun, Z. Li, Q. Wang, and Y. Zhang, “Fedtar: Task and resource-
aware federated learning for wireless computing power networks,” IEEE
Internet of Things Journal, vol. 10, no. 5, pp. 4257–4270, 2023.

[39] R. Zhou, X. Wu, H. Tan, and R. Zhang, “Two time-scale joint service
caching and task offloading for uav-assisted mobile edge computing,”
in IEEE INFOCOM 2022 - IEEE Conference on Computer Communi-
cations, 2022, pp. 1189–1198.

[40] X. Li, G. Zhang, X. Zheng, and S. Hua, “Delay optimization based
on improved differential evolutionary algorithm for task offloading in
fog computing networks,” in 2020 International Conference on Wireless
Communications and Signal Processing (WCSP), 2020, pp. 109–114.

[41] Z.-Y. Chai, Y.-J. Zhao, and Y.-L. Li, “Multi-task computation offloading
based on evolutionary multi-objective optimization in industrial internet
of things,” IEEE Internet of Things Journal, pp. 1–1, 2024.

[42] Y. Sun, C. Lin, J. Ren, P. Wang, L. Wang, G. Wu, and Q. Zhang, “Subset
selection for hybrid task scheduling with general cost constraints,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 790–799.

[43] J.-J. Lin, S.-C. Huang, and M.-K. Jiau, “An evolutionary multiobjective
carpool algorithm using set-based operator based on simulated binary
crossover,” IEEE Transactions on Cybernetics, vol. 49, no. 9, pp. 3432–
3442, 2019.

[44] K. Liagkouras and K. Metaxiotis, “An elitist polynomial mutation
operator for improved performance of moeas in computer networks,”
in 2013 22nd International Conference on Computer Communication
and Networks (ICCCN), 2013, pp. 1–5.

[45] J. Chen and Z. Xiao, “Research on adaptive genetic algorithm based
on multi-population elite selection strategy,” in 2017 2nd IEEE Inter-
national Conference on Computational Intelligence and Applications
(ICCIA), 2017, pp. 108–112.

[46] X. Chen, Y. Mao, H. Wang, Y. Xu, D. Li, S. Liu, and X. Zhao,
“Data-driven task offloading method for resource-constrained terminals
via unified resource model,” IEEE Internet of Things Journal, vol. 10,
no. 11, pp. 9703–9715, 2023.

