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A B S T R A C T
Monitoring bearing failures in production equipment can effectively prevent finished product quality
issues and unplanned factory downtime, thereby reducing supply chain uncertainty and risk. This is
important for improving supply chain sustainability. Due to the limitations in generalization of neural
network models, specific models need to be trained for specific tasks. However, in real industrial
scenarios, there is a severe lack of labeled samples, making it difficult to deploy fault diagnosis models
across massive equipment in workshops. In order to solve the above issue, this paper proposes a cloud-
edge-end collaborative semi-supervised learning framework, which provides multi-level computing
power and data support for building the foundation model. A data augmentation method based on
bearing fault mechanism is proposed, which effectively preserves the inherent essential characteristics
in vibration signals by normalizing frequency and adding noise in specific frequency bands. A novel
contrastive learning model has been designed, which pulls closer the distances between positive
samples and pushes farther away the distances between negative samples in the high-dimensional
space through cross comparison in the time dimension and knowledge dimension, thereby extracting
the most essential characteristics from unlabeled signals. Multiple sets of experiments conducted on
four datasets demonstrate that the proposed approach achieves approximately 98% fault classification
accuracy with only 1.2% labeled samples.

1. Introduction

The sustainability of the semiconductor supply chain
faces considerable risks due to the industry’s reliance on
precision manufacturing equipment. On the one hand, semi-
conductor fabrication facilities consist of many precisely
controlled machines performing different operations, such
as machining and inspection. Undetected mechanical fail-
ures in any of these machines can lead to reduced product
quality and reliability (Ye et al., 2020). On the other hand,
undetected mechanical failures can escalate and lead to un-
expected downtime for entire production lines or even whole
factories (Leoni et al., 2023). Therefore, effective fault diag-
nosis and preventive maintenance strategies can significantly
reduce unforeseen interruptions during production, thereby
positively influencing the efficiency and sustainability of the
entire supply chain (Saihi et al., 2023; Wang et al., 2024).

Rolling bearings, as a crucial component of key equip-
ment in semiconductor manufacturing, are extensively present
in photolithography systems (Zhang et al., 2023a), industrial
robots (Yin et al., 2023), and various industrial apparatus
throughout the manufacturing process (Ni et al., 2023). The
reliability of their performance directly impacts the stable
operation of the production line. Therefore, it is necessary
to continuously monitor the bearings of high-risk or high-
maintenance-cost equipment for faults, so as to accurately
detect and issue warnings, preventing further losses and
risks from the spread of faults (Lu et al., 2023; Yang et al.,
2023). Traditional fault classification algorithms, including
support vector machines, extreme learning machines, k-
nearest neighbors, and their enhanced versions, often require
manual feature extraction tailored to specific task scenarios.
They heavily rely on manual feature selection and prior

knowledge, making it challenging to accurately model real-
world environments, thus limiting the generality of these
methods (Yan et al., 2023). Due to the dispensability of
precise mechanistic models and prior knowledge, data-
driven approaches, especially those based on deep learning,
are becoming increasingly popular (Florian et al., 2021;
Pournader et al., 2021).

However, their practical applicability in the industrial
context is limited. The reasons are as follows:

The model’s limited generality mandates the creation
of specialized fault diagnosis models for nearly every
specific tasks, contributing to high deployment costs. In
an industrial setting, there are hundreds to thousands of bear-
ings that require health monitoring and fault diagnosis. Ex-
isting models for bearing fault diagnosis perform well in the
designed target tasks, but it is challenging to effectively gen-
eralize them to multiple scenarios (Li et al., 2022; Zhao et al.,
2021). Therefore, designing a fault diagnosis model that can
be widely used in multiple scenarios is a challenging task. To
mitigate the challenge of high deployment costs, algorithmic
model compression techniques, such as knowledge distilla-
tion (Long et al., 2023) and pruning (Yeom et al., 2021), have
been efficacious in reducing the computational complexity
of models. At the hardware level, deploying the compressed
model on Internet of Things (IoT) devices has significantly
reduced hardware costs (Kong et al., 2023; Shirin Abkenar
et al., 2022). Nonetheless, the extant literature on model
compression techniques and the IoT has neglected a crucial
issue: the absence of a foundational model tailored for bear-
ing fault diagnosis. Training lightweight models separately
for hundreds or thousands of core components in industrial
equipment is itself an impractical problem (Li et al., 2024;
Lu et al., 2023). Therefore, building a foundation model for
bearing fault diagnosis and achieving effective fine-tuning
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to adapt to downstream tasks is crucial to promoting the
practical application of fault diagnosis models in real-world
industrial scenarios.

Large amounts of unlabeled bearing vibration sig-
nals can be acquired during the operational processes
of industrial equipment, but the cost of labeling them is
prohibitively high. Existing deep learning models often rely
on a significant number of well-labeled samples representing
both healthy and various fault conditions (Zhang et al.,
2023b). When only a small amount of labeled data is avail-
able, deep models will face the dilemma of overfitting and
poor generalization capabilities (Jiao et al., 2020). Unlike
data such as images and sound signals that align with human
intuition, the labeling of mechanical fault relies heavily
on domain expertise, which is time-consuming and costly
(Zhao and Shen, 2023). An intuitive approach is data aug-
mentation, increasing the quantity of labeled invariant data
through various transformations (Liu et al., 2022). However,
traditional data augmentation methods (such as rotation,
cropping, or their combinations) were initially designed for
images and are not suitable for bearing vibration signals (Hu
et al., 2023; Zhuo and Ge, 2021).

Large-scale foundation models such as GPT-4 (OpenAI,
2023) have demonstrated highly intelligent cross-domain
capabilities and zero-shot generalization abilities. Effec-
tive feature extraction models (Han et al., 2023) and self-
supervised representation learning algorithms (Huang et al.,
2023) are key to achieving the aforementioned performance
leaps in foundation models (Li et al., 2024). Training a
universal fault diagnosis model based on extensive unlabeled
data, capable of efficient fine-tuning for specific target tasks,
is crucial for addressing the aforementioned issues. Within
this paradigm, adapting to specific downstream tasks is
achievable solely through domain fine-tuning of the foun-
dation model. However, as far as we are aware, there is
currently no pertinent research available.

Inspired by GPT-like foundation models, this paper pro-
poses BearingFM: a developing foundation model for bear-
ing fault diagnosis by domain knowledge and contrastive
learning. The main contributions of this paper are as follows:

• A cloud-edge collaborative bearing fault diagnosis
foundation model is proposed. Constructing a foun-
dation model on the cloud layer leverages large unla-
beled data to train a highly generalizable model, re-
ducing the need for specialized models. Efficient fine-
tuning with a small labeled dataset on edge servers
rapidly adapts this foundation model to specific indus-
trial scenarios.

• A sample augmentation method rooted in the physical
mechanism of bearing vibration data is proposed. By
normalizing the mechanical rotation frequency and
adding noise in specific frequency bands related to
the fault mechanism, the differences in vibration sig-
nals between different devices are effectively reduced,
providing data-level support for the construction of a
basic model.

• Sample augmentation has achieved a certain degree
of sample expansion, but it cannot completely solve
the problem of lacking labeled samples. Therefore, a
novel contrastive learning model has been designed.
By predicting and cross-comparing across time and
knowledge dimensions, the model focuses on extract-
ing inherent commonalities across diverse bearing
vibration signals. The cross-dimensional comparison
directs the model to core shared characteristics, over-
coming the limitation of insufficient labeled exem-
plars.

The rest of this paper is organized as follows. Section 2
introduced the related work. Section 3 provided a detailed
explanation of the proposed cloud-edge-end collaborative
framework. Section 4 introduced a bearing vibration signal
enhancement method empowered by domain knowledge,
along with a contrastive learning model that considers the
dimensions of temporal level and knowledge level. Section 5
validated the effectiveness of the proposed methods through
multiple experiments. Finally, Section 6 concluded this pa-
per.

2. Related Work

2.1. Semi-supervised Learning

Semi-supervised learning proves adept at leveraging un-
labeled data to enhance model generalization. By maximiz-
ing the similarity among positive samples and minimiz-
ing the distance between negative samples, the algorithm
effectively captures the intrinsic structure of the data, ac-
quiring invariant representations across diverse datasets. Yu
et al. (2021) proposed a three-stage semi-supervised learning
method that achieves accurate fault diagnosis with limited la-
beled data. Sarkar and Etemad (2022) introduced SSL-ECG,
which enhances the model’s ability to learn latent abstract
representations from unlabeled time-series data by applying
six transformations to the dataset. Oord et al. (2019) pro-
posed an unsupervised learning method based on contrastive
predictive coding. By using a powerful autoregressive model
to predict future representations in latent space, it efficiently
extracts useful features from high-dimensional data. Eldele
et al. (2023) proposed a time-series representation learning
framework based on time and context contrast (TS-TCC).
It extracts useful representations from unlabeled data by
contrasting different data augmentation views. Yue et al.
(2022) introduced two contrastive losses to perform con-
trastive learning hierarchically. By contrasting the same
sample at different time segments and different samples, it
learns a universal representation of time series at arbitrary
semantic levels. Hu et al. (2023) proposed a cross-instance
and cross-time self-supervised learning framework for fault
diagnosis. By integrating self-supervised learning from a
large amount of unlabeled data and supervised learning from
a small amount of labeled data, it enriches the learnable
data capacity. Peng et al. (2023) proposed an open-set fault
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diagnosis method based on supervised contrastive learning.
It simulates unknown faults by generating negative out-of-
distribution data, achieving fault diagnosis under sample
imbalance in open-set scenarios.

Semi-supervised learning, particularly contrastive learn-
ing, has achieved significant success in various fields. The
key to the success of contrastive learning lies in data aug-
mentation (Chen et al., 2020). However, existing research
attempts to enhance data through noise addition, scaling,
and other transformations at the data level, overlooking the
mechanistic knowledge and expert experience accumulated
over decades in specialized areas such as bearing fault diag-
nosis.
2.2. Industrial Foundation Model

In the past two years, large-scale foundation models
(LSF-Models) such as GPT4 (OpenAI, 2023) and GLM-
130B (Zeng et al., 2023) have demonstrated highly in-
telligent cross-domain capabilities and zero-shot general-
ization abilities, and can generalize to unseen data with-
out additional training. Effective feature extraction mod-
els (Han et al., 2023) and self-supervised representation
learning algorithms (Huang et al., 2023) are the key to
the above-mentioned performance leaps of large-scale foun-
dation models (Li et al., 2024). The emergence of LSF-
Models in NLP and CV fields has realized the grand uni-
fication of models. By pre-training a LSF-model and fine-
tuning in vertical domains, efficient downstream adaptation
of models can be achieved. Jin et al. (2023) proposed the
Time-LLM framework, which successfully applies large
language models (LLMs) to time series prediction through
re-programming and prompt-as-prefix methods. On the ba-
sis of keeping the basic model unchanged, this framework
effectively improves the inference ability of LLMs on time
series data through enriching the text prototypes and input
contexts. Wu et al. (2020) proposed a new time series predic-
tion method that utilizes self-attention mechanisms to learn
complex patterns and dynamics of time series data using
Transformer-based machine learning models. This general
framework can be applied to univariate and multivariate time
series data, as well as time series embeddings. Chang et al.
(2023) proposed LLM4TS, which achieves time series pre-
diction by pre-training LLMs in two stages. This framework
improves time series patches and time encodings, enhancing
the performance of LLMs in processing time series data.

The cross-domain capabilities and zero-shot generaliza-
tion abilities of foundation models are the key to solving the
problem of poor model generalizability. In recent months,
foundation models in the industrial field have made some
progress. However, the overall situation is still in the initial
stage, and much of the relevant work has not yet been
formally published. As far as we know, there is not yet
research on foundation models applied to rotating equipment
fault diagnosis.

3. Collaborative framework

3.1. Overall framework
In response to the challenges faced in deploying bear-

ing fault diagnosis in large-scale industrial settings, such
as the scarcity of labeled samples and high deployment
costs, this paper proposes a cloud-edge-end collaborative
framework for general bearing fault diagnosis. As illustrated
in Fig. 1, the cloud server can cost-effectively gather unla-
beled vibration signals from a wide range of similar rotating
equipment. By integrating these with a limited number of
labeled samples, the server is able to develop a foundational
model. The edge server then performs domain fine-tuning
on this foundational model to achieve efficient adaptation
for specific tasks. Unlike training specialized models from
scratch, the approach of employing a foundational model
with domain fine-tuning effectively leverages the universal
fault mechanism features inherent in the extensive unla-
beled pre-training data. This strategy facilitates faster model
convergence. The edge server, taking into account the dif-
ferent operating conditions of various end devices, further
customizes the fine-tuned model through distillation and
deploys it to the corresponding end devices. End devices,
which are low-cost and low-power IoT devices deployed
on workshop equipment for fault diagnosis, benefit from
the advantages of low cost and low communication latency
(Yang et al., 2022). Since the edge server has customized the
model through distillation based on the operating conditions
of different devices, the framework significantly reduces the
storage and computational demands on IoT devices.

Fig. 1. General Bearing Fault Diagnosis Framework with Cloud-
edge-end Collaboration.

Cloud layer: The powerful computational capabilities
of the cloud server provide the computational support for
constructing the foundation model. At the device level,
the cloud server consists of a massive number of high-
performance GPU/TPU units. On the data front, the cloud
server aggregates publicly available bearing fault diagnosis
and life prediction datasets from the internet, as well as bear-
ing vibration signals collected from industrial equipment
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by subordinate edge nodes. The extensive bearing vibration
signals collectively form the large-scale dataset within the
cloud server. Leveraging the robust computational power of
the cloud server and the large-scale dataset, a foundation
model suitable for various bearing fault diagnosis tasks is
trained. While it may not achieve optimal performance in all
downstream tasks, the universal foundation model, having
learned invariant features from a massive and diverse set of
bearing data sources, can be fine-tuned slightly for specific
downstream applications, yielding improved performance.

Edge layer: The edge layer serves as the link between
the large cloud-based model and the specific downstream
tasks at the end layer. At the device level, the edge server
is equipped with GPU/TPU units, providing necessary com-
putational support for the efficient domain fine-tuning of
the foundation model. On the data level, the edge server
aggregates bearing vibration signals collected by subordi-
nate end devices and encapsulates data from similar devices
into domain-specific datasets. On the model level, the edge
server employs a two-stage domain adaptation paradigm.
In the first stage, based on the specific requirements of
fault diagnosis for the end devices, the foundation model
is adapted to the corresponding domain through parameter-
efficient fine-tuning. In the second stage, considering the op-
erating conditions of the end devices, the foundation model
undergoes personalized distillation/model compression. The
compressed model, tailored to fulfill the fault diagnosis
requirements of end devices, must be lightweight to en-
sure reliability on IoT devices at the end layer, particularly
considering the constraints imposed by limited hardware
resources.

End layer: The end layer forms the foundation of the
cloud-edge-end collaborative framework. At the device level,
the end layer comprises a vast array of workshop me-
chanical equipment along with corresponding IoT devices.
Its primary role is to connect and manage sensors and
manufacturing devices in the industrial field, ultimately
supporting the construction of datasets and the deployment
of models. In data layer, through IoT devices at the end
layer, real-time collection and preprocessing of massive
bearing vibration signals in the workshop can be achieved,
resulting in data packets that record the historical vibration
signals of the equipment. The collection and preprocessing
of signals typically have lower computational demands.
Compared to traditional data collection methods based on
edge/cloud servers, the introduction of IoT devices greatly
reduces the cost of data collection. In model layer, com-
pressed AI models for fault diagnosis can be deployed
on end IoT devices. Fault diagnosis often requires quick
responses and timely actions. In contrast to traditional cloud
computing paradigms, running fault diagnosis models on IoT
devices not only lowers deployment costs but also reduces
communication latency. This facilitates faster detection and
identification of potential faults.

3.2. Cloud-edge-end collaboration factors supporting
foundation model construction

Construction of Domain-Specific Datasets Based on IoT
Devices: Data collection and preprocessing are the founda-
tion of constructing domain-specific datasets. The introduc-
tion of IoT devices has significantly reduced the cost of data
collection processes. These devices collect real-time vibra-
tion signals from a vast array of mechanical devices within
the factory workshop. Industrial sites may feature sensors
with varying noise profiles and sampling rates, necessitat-
ing that IoT devices perform appropriate filtering based on
the hardware characteristics of the specific vibration signal
sampling circuit to mitigate noise interference. Since IoT
devices are installed in specific mechanical equipment, it is
possible to design dedicated filter parameters and resampling
algorithms tailored to the unique sampling circuit. By inte-
grating the vibration data sampling and preprocessing stages
into IoT devices, not only is real-time processing enhanced,
but cloud communication costs are also reduced. Further-
more, this approach effectively leverages the computational
capabilities of IoT devices, making data processing more
intelligent and adaptable. Edge servers categorize the col-
lected vibration signals from subordinate end nodes, creating
domain-specific datasets.Cloud servers then aggregate these
domain datasets from edge servers, integrating them into a
more universally applicable and extensive dataset.

Efficient Fine-tuning: Each edge server’s subordinate
devices exhibit uniqueness in fault characteristics, data dis-
tribution, and business logic. In practical applications, it is
often necessary to leverage knowledge closely related to a
specific domain, and if the information in foundation models
is not filtered and optimized, it may not only be ineffec-
tive but also lead to resource waste and reduced efficiency.
Therefore, in the fault diagnosis process, efficient fine-tuning
of the foundation model for a specific application domain
becomes particularly important. Further domain fine-tuning
of foundation models helps eliminate unnecessary infor-
mation in a specific domain while enhancing the learning
of key features. The fine-tuned model can more accurately
identify and handle faults within the domain, thereby im-
proving diagnostic accuracy and efficiency. Additionally, in
practical applications, fault patterns may change over time or
with technological development. This requires the model to
quickly adapt to new fault features. By performing targeted
fine-tuning of the foundation model, the model can integrate
new data and knowledge rapidly while preserving its original
knowledge structure, thus maintaining the model’s flexibility
and adaptability.

Personalized Model Compression: Deploying fault di-
agnosis models on IoT devices can significantly reduce
costs and enhance the real-time capability of fault diagnosis.
However, IoT devices typically have limited computational
power, storage space, and power supply, making it imprac-
tical to run large fault diagnosis models directly on these
devices. Therefore, model compression capability is a neces-
sary feature in cloud-edge-end fault diagnosis frameworks.
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Fig. 2. Overall Framework of BearingFM.

Edge servers should perform personalized compression of
the model based on the specific fault diagnosis scenarios of
each IoT endpoint device. For example, a device may have
10 different operating conditions, but in actual production
processes, it operates only in three of them. During the
compression process, the edge server only needs to ensure
the model achieves high accuracy in these three operating
conditions.

4. Methodology

The core of contrastive learning lies in maximizing the
similarity between different transformations of samples from
the same class, while minimizing their similarity with other
samples. Therefore, augmenting the vibration signal data
is the key to the success of contrastive learning methods
(Chen et al., 2020). Inspired by self-supervised learning in
speech (Oord et al., 2019), we propose Bearing foundation
Model (BearingFM). The overall framework of the proposed
BearingFM is shown in Fig. 2. It includes three parts: Signal
acquisition and preprocessing, Sample augmentation based

on fault mechanisms, and Temporal and Knowledge Level
Contrastive Learning.
4.1. Signal acquisition and preprocessing

The characteristic components in the signal of bearing
faults are closely related to the rotation angle of the bearing,
and the characteristic frequency of the fault signal is directly
proportional to the rotational speed. By resampling the rota-
tional frequency𝜔0 to a fixed value, the influence of different
speeds on the spectrum can be eliminated.

Rotating equipment that requires fault diagnosis is typ-
ically expensive or critical, and almost all of them are
equipped with rotational speed sensors. In cases where a few
do not have rotational speed sensors, their motor controllers
are internally equipped with speed observers. For bearing
fault diagnosis, obtaining the rotational speed is easy and
does not incur additional costs.

Assume the sampling rate of the vibration signal sensor
is 𝑓𝑠, and the original vibration signal 𝑉 of duration 𝑡𝑠 is
collected. Resample it with time interval Δ𝑡𝑟 to obtain the
sample with normalized rotation speed and sampling rate:
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𝑽 = 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒(𝑉 , 𝑓𝑠,Δ𝑡𝑟) (1)
where resample(⋅) represents the resampling operation,

Δ𝑡𝑟 is the resampled time interval and can be calculated as:

Δ𝑡𝑟 =
𝑡𝑠𝜔𝑚
𝑓𝑛𝜔𝑛

(2)

where 𝜔𝑚 is the angular velocity of the bearing, 𝜔𝑛 is the
normalized standard angular velocity, and 𝑓𝑛 is the normal-
ized standard sampling rate.

Split 𝑽 into 𝑝 sub-sequences of length 𝑛 using the
sliding window method. For each sub-sequence, resample it
at regular angular intervals as follows. 𝑽 = {𝒗1, 𝒗2, ..., 𝒗𝑝}.

The above process normalizes the bearing vibration sig-
nals of different rotation speeds and sampling rates to a
standard angular velocity and sampling rate, which helps the
deep learning model focus on extracting the order character-
istic features (Wang et al., 2019) specific to bearing faults.
4.2. Sample augmentation based on fault mechanisms

Recent research has demonstrated that combining vari-
ous sample augmentation techniques can yield superior per-
formance in image data analysis (Chen et al., 2020). In the
realm of time series contrastive learning, a combination of
transformations such as scaling, jittering, and time shifting is
frequently employed to achieve time sample augmentation,
thereby addressing the issue of insufficient labeled samples
(Luo et al., 2023).

When bearing fault occurs, it generates characteristic
signals at specific frequencies. Accurate extraction and iden-
tification of these characteristic signals are crucial for ef-
fective fault diagnosis of bearings. Drawing on the typical
methods in existing contrastive learning research, this paper
employs data augmentation techniques at the signal level,
including noise addition, scaling, and shifting, to generate
augmented views of the data. However, signal-level aug-
mentation indiscriminately applies noise addition, scaling,
and shifting operations to the vibration signals, which may
potentially disrupt the specific frequency characteristics es-
sential for fault diagnosis. Therefore, we have designed a
sample augmentation method based on fault mechanisms.
This method leverages prior knowledge of fault mechanisms
to ensure that the unique signals indicative of faults are pre-
served while achieving sample augmentation. By generating
both signal-augmented views and mechanism-augmented
views of the same sample for comparison, the model can
deeply learn fault characteristics that remain invariant under
different interference conditions. This approach effectively
enhances the model’s generalization capability and robust-
ness.

For the input sample 𝒗𝑝, its signal-level enhanced view
is represented as 𝒗𝑠𝑝. Signal-level enhancement is achieved
by applying finite changes to the shape of the original
signal, including operations such as scaling, time shifting,

and adding noise. Signal-level enhancement introduces sig-
nificant disturbances to the signal shape while preserving
temporal information.

The representation of the mechanistic-level enhanced
view is denoted as 𝒗𝑚𝑝 . Mechanistic-level enhancement is
achieved through analysis of bearing characteristic frequen-
cies. After a bearing develops a fault, local impact forces are
generated when mechanical contact occurs at the damaged
location, resulting in pulse excitation and eliciting vibration
responses from bearing components and bearing seats. The
frequencies at which impacts occur at different fault loca-
tions (fault characteristic frequencies) vary. Characteristic
frequencies can be obtained through motion analysis of
the bearing, considering the bearing’s rotational speed, the
shape and dimensions of its components, and the relation-
ships governing its movement.

Inner race fault:

𝑓𝑖 =
𝑛𝑏
2

(

1 +
𝑑𝑏
𝐷𝑚

cos 𝛼
)

𝑓𝑟 (3)

Outer race fault:

𝑓𝑜 =
𝑛𝑏
2

(

1 −
𝑑𝑏
𝐷𝑚

cos 𝛼
)

𝑓𝑟 (4)

Cage fault:

𝑓𝑐 =
1
2

(

1 −
𝑑𝑏
𝐷𝑚

cos 𝛼
)

𝑓𝑟 (5)

Ball fault:

𝑓𝑏 =
𝐷𝑚
2𝑑𝑏

(

1 −
(

𝑑
𝐷𝑚

cos 𝛼
)2

)

𝑓𝑟 (6)

where 𝑛𝑏 represents the number of balls, 𝑑𝑏 is the diameter
of the balls (mm), 𝐷𝑚 is the diameter of the circle passing
through the centers of the rolling elements (mm), 𝑓𝑟 is the
rotational frequency of the shaft (Hz), and 𝛼 is the contact
angle. Furthermore, a bandpass filter can be designed.

𝑓𝑟 =
min(𝑓𝑖, 𝑓𝑜, 𝑓𝑐 , 𝑓𝑏) + max(𝑓𝑖, 𝑓𝑜, 𝑓𝑐 , 𝑓𝑏)

2
(7)

𝐵 = max(𝑓𝑖, 𝑓𝑜, 𝑓𝑐 , 𝑓𝑏) + min(𝑓𝑖, 𝑓𝑜, 𝑓𝑐 , 𝑓𝑏) (8)
where 𝑓𝑟 is the center frequency of the bandpass filter, and
𝐵 is the bandwidth of the passband.

The vibrational signals generated due to malfunctions
can be categorized into two primary components: those
related to the fault mechanism itself and others comprising
carrier waves, harmonics, and noise. Through the applica-
tion of bandpass filters, it is feasible to isolate and eliminate
the frequency bands in artificially generated noise signals
that are pertinent to the fault mechanism. This approach
facilitates the augmentation of noise in the signal while
endeavoring to preserve the inherent characteristics of the
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bearing vibration signal at a mechanistic level, thereby not
compromising its fundamental attributes.

To further analyze the vibrational signals associated
with bearing faults, the original vibration signal sample,
denoted as 𝒗𝑝, is enhanced by adding two types of noise:
Gaussian noise, which is unrelated to the fault mechanism,
and band noise tailored to the fault mechanism, resulting in
the creation of two modified samples, 𝒗𝑠𝑝 and 𝒗𝑚𝑝 . Subse-
quently, these samples undergo a process known as Mecha-
nism Transformation (MT). MT principally consists of three
stages: transformation of the signal’s Power Spectral Density
(PSD), amplitude transformation, and scale transformation.
The application of these steps is exemplified using the 𝒗𝑠𝑝sample.

To alleviate the impact of noise caused by mechanical
resonance, the vibration signal is analyzed using Hilbert
transform to extract its envelope spectrum:

𝐻𝑠
𝑝 (𝜏) = ∫

∞

−∞

𝑣𝑠𝑝(𝜉)

𝜋(𝜏 − 𝜉)
𝑑𝜉 (9)

where, 𝑣𝑠𝑝(𝜏) is the 𝜏-th point of the sample 𝒗𝑠𝑝.Transform 𝐻(𝜏) to the frequency domain:

𝐻𝑠
𝑝 (𝑓 ) = ∫

∞

−∞
𝐻𝑠
𝑝 (𝜉)𝑒

−𝑖2𝜋𝑓𝜉𝑑𝜉 (10)

where, 𝑓 represents frequency, 𝑖 is the imaginary unit.
The power spectrum 𝑥̂𝑠𝑝(𝑓 ) is the square of the amplitude

of the signal after Fourier transform, expressed as:
𝑥̂𝑠𝑝(𝑓 ) = |𝐻𝑠

𝑝 (𝑓 )|
2 (11)

Horizontal, vertical stretching and shifting operations
are performed on 𝑥𝑠𝑝:
𝒙𝑠𝑝 = enhance(𝑥̂𝑠𝑝(𝑓 )) (12)
where enhance(⋅) represents horizontal, vertical stretching
and shifting operations performed on the samples to enhance
the generalization of the deep learning models trained sub-
sequently(Eldele et al., 2023).

The CMT transform process for 𝑥𝑚𝑝 is similar to that for
𝑥𝑠𝑝, so the details are omitted here for brevity. The power
spectrum provides the distribution of signal power in the
frequency domain. It can reveal the natural frequencies,
harmonic components, and potential fault features of the
system. This provides a data-level basis for the subsequent
construction of contrastive learning models.
4.3. Temporal and knowledge level contrastive

learning

The proposed contrastive learning consists of two parts:
time-contrastive module, and knowledge module. The time-
contrastive module, using Transformer, predicts the future of
the signal-enhanced view from the past of the mechanistic-
enhanced view and vice versa. This design further enhances
the model’s ability to extract essential features related to the

mechanism in the time-domain vibration signals of bear-
ings. The Knowledge Contrasting module extracts high-
dimensional features from the signal-enhanced view and the
mechanistic-enhanced view, compares them, and calculates
the loss.
4.3.1. Temporal-level contrast

Theoretical analysis and experimental validation both
indicate that bearing damage is a gradual process, and the
time-domain vibration signals generated during operation do
not undergo sudden changes in a short time (on the order
of seconds). In supervised learning, a common approach
is to use a sliding window method to divide a long-time
sequence of bearing vibration signals into multiple subse-
quences, where the subsequences share the same fault label.
Therefore, subsequences from different time points of the
same vibration signal sample serve as positive samples.

The core idea of temporal-level contrast is to optimize
the similarity between representations at different time steps,
thereby learning temporal dependencies. The specific imple-
mentation steps are as follows:

According to section 4.1, by slicing the temporal sam-
ples, we can obtain enhancement 𝒙𝑠 = {𝑥𝑠1, 𝑥

𝑠
2, ..., 𝑥

𝑠
𝑡 } at the

signal level and enhancement x𝑚 = {𝑥𝑚1 , 𝑥
𝑚
2 , ..., 𝑥

𝑚
𝑡 } at the

mechanism level, where 𝑘 represents the sample sequence
number. We employed the encoder proposed in reference
(Wang et al., 2017) to extract high-dimensional features from
the two enhanced views mentioned above. After encoding,
𝒙𝑠 and 𝒙𝑚 are respectively encoded as z𝑠 = {𝑧𝑠1, 𝑧

𝑠
2, ..., 𝑧

𝑠
𝑝}and z𝑚 = 𝑧𝑚1 , 𝑧

𝑚
2 , ..., 𝑧

𝑚
𝑝 }. Let 𝑝 be the predicted depth

(1 < 𝑝 < 𝑡), 𝒙̂𝑠𝑝 = {𝑥𝑠𝑝, ..., 𝑥
𝑠
𝑡 }, 𝒙̂𝑚𝑝 = {𝑥𝑚𝑝 , ..., 𝑥

𝑚
𝑡 }. Fur-

ther, the encoder encodes 𝒙̂𝑠𝑝 and 𝒙̂𝑠𝑝 into high-dimensional
features, denoted as 𝒛̂𝑠𝑝 ∈ ℝ𝑘 and 𝒛̂𝑚𝑝 ∈ ℝ𝑘. The temporal
regression module encodes x𝑠𝑝 = {𝑥𝑠1, 𝑥

𝑠
2, ..., 𝑥

𝑠
𝑝} and x𝑚𝑝 =

{𝑥𝑚1 , 𝑥
𝑚
2 , ..., 𝑥

𝑚
𝑝 } into signal-view feature 𝒄𝑠𝑝 ∈ ℝ𝑤 and

mechanism-view feature 𝒄𝑚𝑝 ∈ ℝ𝑤, respectively. Training
a linear neural network 𝜓𝑐𝑧 ∶ ℝ𝑤→𝑘, mapping c𝑠𝑝 and c𝑚𝑝 to
the same dimension as 𝒙̂𝑠𝑝 and 𝒙̂𝑚𝑝 .

The temporal-level comparative loss is as follows

𝐿𝑠𝑇𝐶 = − 1
𝐾

𝐾
∑

𝑘=1
log

exp((𝜓𝑐𝑧(c𝑠𝑝))
𝑇 z𝑠𝑡 )

∑

𝑖∈M𝑝,𝑡
exp((𝜓𝑐𝑧(c𝑠𝑝))

𝑇 z𝑠𝑖 )
(13)

𝐿𝑚𝑇𝐶 = − 1
𝐾

𝐾
∑

𝑘=1
log

exp((𝜓𝑐𝑧(c𝑚𝑝 ))
𝑇 z𝑚𝑡 )

∑

𝑖∈M𝑝,𝑡
exp((𝜓𝑐𝑧(c𝑚𝑝 ))

𝑇 z𝑚𝑖 )
(14)

Furthermore, a Transformer was deployed as an au-
toregressive model to achieve autoregression from high-
dimensional features z𝑠 and z𝑚 at the hierarchical level before
time step 𝑝 to high-dimensional features c𝑠𝑝 and c𝑚𝑝 from time
step 𝑝 to 𝑡. Considering that we did not make modifications to
the Transformer model, we will not elaborate on it here. The
specific structure of the Transformer model will be provided
in the experiments in Section 5.
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4.3.2. Knowledge-level contrast

In the temporal contrastive learning, a self-regressive
Transformer module has been constructed to summarize the
features of samples before time 𝑝 into high-dimensional
vectors c𝑠𝑝 and c𝑚𝑝 . If a mini-batch contains 𝑀 samples,
after signal augmentation and mechanism enhancement, 2𝑀
enhanced views are obtained. Let c𝑘𝑝 represent the 𝑘-th
sample of the views enhanced through signal augmentation
and mechanism enhancement for a batch. In each mini-batch,
there are a total of 2 positive pairs and 2(M-1) negative pairs.
Define (c𝑘𝑝 , c

𝑘+
𝑝 ) as a positive pair, then the knowledge-level

contrastive loss is given by

𝐿(𝑐𝑘p , c
𝑘+
𝑝 ) = − log

exp(𝑠𝑖𝑚(c𝑘𝑝 , c
𝑘+
𝑝 )∕𝜂

∑2𝑀
𝑗=1 𝛿𝑖,𝑗 exp(𝑠𝑖𝑚(c𝑘𝑝 , c

𝑗
𝑝)∕𝜂

(15)

𝐿𝑐𝑐 =
1
2𝑁

∑2𝑀
𝑣

[𝐿(2𝑣 − 1, 2𝑣) + 𝐿(2𝑣, 2𝑣 − 1)] (16)

The overall self-supervised loss function is
𝐿𝑐𝑜𝑛 = 𝜆1 ⋅ (𝐿𝑠𝑇𝐶 + 𝐿𝑚𝑇𝐶 ) + 𝜆2 ⋅ 𝐿𝑐𝑐 (17)

The weights of the temporal contrastive loss and the
knowledge contrastive loss can be adjusted through the
hyperparameters 𝜆1 and 𝜆2.

5. Experiment

5.1. Dataset description

To validate the feasibility and performance of the pro-
posed BearingFM, relevant experiments were conducted.
Bearings used in various types of mechanical equipment
across different industries exhibit significant similarities.
Due to the lack of publicly available datasets for bearing fault
diagnosis in semiconductor manufacturing equipment, four
publicly available general bearing fault diagnosis datasets
were utilized for the experiments.

CWRU dataset: This publicly available dataset was
sourced from Case Western Reserve University (CWRU)
(Smith and Randall, 2015). The machinery operated under
the conditions of 0-3 horsepower motor loads and motor
speeds ranging from 1730 to 1797 revolutions per minute
(rpm). The CWRU dataset encompasses three distinct bear-
ing failure states in addition to the normal condition (NC),
namely outer race fault (OR), inner race fault (IR), and ball
fault (BF). Notably, the vibration signal was recorded at a
sampling frequency of 12 kHz. To ensure alignment with
fault types in other datasets, samples from the ball fault cat-
egory were excluded. For the zero-shot testing set, samples
from one operational condition of the remaining three fault
types were selected. The data from the other operational
conditions were then divided into training, validation, and
test sets in a 6:2:2 ratio.

PU dataset: The experimental platform of the Paderborn
University (PU) (Lessmeier et al., 2016) dataset comprises
an electric motor, a torque measuring shaft, a rolling bearing
test module, a flywheel, and a load motor. The dataset’s
experimental data is generated by installing ball bearings
with various damage types in the bearing test module. Faulty
bearings are categorized into artificial damage and real dam-
age. Artificial damage results primarily from EDM (crack-
ing), drilling (spalling), and electric engraving machines
(pitting). Real damage bearings are obtained through ac-
celerated life test benches. Both artificial and real damage
encompass three main types of failure: normal condition
(NC), outer race fault (OR), and inner race fault (IR). In
the experiment, three types of bearing fault samples gen-
erated by an electric engraver under a specific operating
condition were randomly selected as the zero-shot test set.
The remaining bearing fault data generated by the electric
engraver under different operating conditions were divided
into training, validation, and test sets according to a 6:2:2
ratio.

MFPT dataset: This publicly available dataset provided
by the Society for Machinery Failure Prevention Technology
(SMFPT) comprises the vibration signals collected when
a motor operates at a constant speed of 1500 rpm. These
signals are categorized into three conditions: normal con-
dition (NC), inner race fault (IR), and outer race fault (OR).
Specifically, the dataset includes three sets of normal con-
dition signals, three sets of outer race fault signals under
identical conditions, seven sets of inner race fault signals
under varying conditions, and seven sets of outer race fault
signals under varying conditions. For the experiment, one
set of inner race fault signals and one set of outer race fault
signals under specific conditions were randomly selected
as the zero-sample test set. The remaining samples were
divided into training, validation, and test sets in a 6:2:2 ratio.

JNU dataset: This dataset provided by Jiangnan Uni-
versity in China, includes 12 categories under operational
conditions of 600 rpm, 800 rpm, and 1000 rpm (Li et al.,
2013). These categories comprise normal health condition
(NC), inner race fault (IR), outer race fault (OR), and ball
fault (BA). Vibration signals were collected at a sampling
frequency of 50 kHz, with each data sample having a du-
ration of 20 seconds. To ensure alignment with fault types
in other datasets, samples from the ball fault category were
excluded. For the zero-shot testing set, samples from one
operational condition of the remaining three fault types were
selected. The data from the other operational conditions
were then divided into training, validation, and test sets in
a 6:2:2 ratio.
5.2. Implementation details

The server are equipped with Intel Xeon Platinum 6133
20-core CPU, 128GB RAM, and four NVIDIA RTX A6000
GPUs. The experimental operating system is Ubuntu 22.04,
and the PyTorch framework version is 2.0.1. For the Trans-
former used in the experiment, we set the number of layers
to 35, the number of attention heads to 4, and the hidden
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layer size of the model to 100. The dropout is set to 0.35.
Setting 𝜆1 = 1.0 and 𝜆2 = 0.7 to adjust the weights for
temporal-level contrast and knowledge-level contrast.

We evaluate performance using two metrics: accuracy
and the macro-averaged F1-score, providing a more compre-
hensive assessment of performance.

Accuracy =
∑𝑀
𝑖=1 𝑇𝑃𝑖
𝑁

(18)

F1−score = 2
𝑀

𝑀
∑

𝑖=1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + ×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

(19)

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑃𝑖

,𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = 𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖

. 𝑇𝑃𝑖, 𝐹𝑃𝑖
and 𝐹𝑁𝑖 denote the False Positives, and False Negatives for
the i-th class respectively. 𝑁 is the total number of samples,
and 𝑀 is the number of classes in the dataset.
5.3. Semi-supervised experiment

To verify the fault classification accuracy of the pro-
posed BearingFM model, we conducted experiments on four
publicly available bearing fault diagnosis datasets: CWRU,
PU, MFPT, and JNU, as well as the “Merged” dataset ob-
tained by combining the aforementioned four datasets. Each
dataset was evaluated under three experimental conditions
with 0.4%, 1.2%, and 2% labeled samples, respectively. The
construction process of the BearingFM model in the exper-
iments consisted of two phases. In the first phase, the unla-
beled “Merged” dataset was used for unsupervised learning.
This phase aimed to enable the model to learn the invariant
features related to the fault mechanism from a large number
of unlabeled samples of vibration signals from bearings of
different mechanical equipment. In the second phase, a small
amount of labeled samples was randomly selected from the
‘Merged’ dataset for preliminary fine-tuning of the model.
In the third phase, the model is efficiently fine-tuned using
a limited number of labeled samples from the target task.
The experimental results for the first two phases are shown
in the “Merged” row of Table 1. It is noted that, due to the in-
clusion of bearing vibration signals from various mechanical
equipment and operating conditions in the “Merged” dataset,
the 0.4% of labeled samples was insufficient for the model
to achieve high classification accuracy. However, when the
number of labeled samples reached 1.2%, the classification
accuracy of the model significantly improved. When the
number of labeled samples reached 2%, the model achieved
a classification accuracy of nearly 90%. Although further
increasing the number of labeled samples could still improve
the model’s performance, considering the high cost of data
labeling in real industrial scenarios, we did not use more than
2% of labeled data in all subsequent experiments.

To further validate the efficient fine-tuning performance
of the proposed BearingFM, we utilized the model trained
with 0.4% labeled data from the “Merged” dataset as the
foundation model and performed fine-tuning on four distinct

datasets with a small number of labeled samples (the third
stage of the model construction process). The experimental
results are shown in Table 1. Utilizing only 0.4% labeled
samples from the target tasks, the model achieved high accu-
racy. When the number of labeled samples reached 1.2%, the
model attained 100% classification accuracy on the CWRU
and MFPT datasets. With 2% labeled samples, the model
reached 100% classification accuracy in three out of four
datasets, excluding the PU dataset. The PU dataset presents
more complex fault modes, and although the model’s accu-
racy on the PU dataset was lower compared to the other three
datasets, it still achieved over 98% classification accuracy
with only 1.2% labeled samples for fine-tuning. In summary,
across all four target tasks, the model achieved over 93% fault
classification accuracy with just 0.4% labeled samples for
fine-tuning. With 1.2% labeled samples from the target tasks,
the model attained over 98% fault classification accuracy.
The experimental results demonstrate that the BearingFM
constructed with 0.4% labeled samples exhibits significant
potential for effective fine-tuning.
5.4. Zero-shot experiment

In developing the BearingFM, we integrated a diverse
dataset from multiple scenarios and employed a sample
augmentation method based on bearing fault mechanisms.
This approach endowed the model with robust generalization
capabilities. To evaluate the zero-shot generalization perfor-
mance of BearingFM, we adhered to the commonly used
zero-sample test set partitioning method in existing bearing
fault diagnosis research. Specifically, we randomly selected
one operating condition from each dataset, completely ex-
cluded it from the training set, and used it as the zero-
shot test set, thereby simulating a zero-shot generalization
scenario in bearing fault diagnosis tasks.

The zero-shot test results are presented in Table 2. When
the labeled data ratio was 0.40%, the model’s performance
remained robust across all datasets, achieving accuracies
of 91.21%, 93.97%, 100.00%, and 99.47% for the CWRU,
PU, MFPT, and JNU datasets, respectively. The "Merged"
dataset, which includes data from various equipment and
conditions, exhibited a relatively lower zero-shot test accu-
racy at a 0.40% labeling ratio. However, as the labeling ratio
increased to 1.20%, the accuracy significantly improved to
87.12%. It is important to note that the test data used in
the zero-shot experiments comprised entirely new operating
conditions that were absent from the training and valida-
tion sets. Overall, the comparison between Tables 2 and 1
indicates that the accuracy of BearingFM on the zero-shot
test set was only slightly lower than on the regular test set.
This finding suggests that the model, having been trained
on a large amount of unlabeled data, effectively captured
the intrinsic invariant features of bearing vibration signals
under different operating conditions, demonstrating strong
zero-shot generalization performance.
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Table 1
Performance comparison on different datasets with varying amounts of labeled data.

Dataset 0.4% Labeled data 1.2% Labeled data 2% Labeled data
Accuracy F1-score Accuracy F1-score Accuracy F1-score

Merged 46.57% 42.32% 86.12% 85.87% 89.02% 89.13%
CWRU 95.56% 95.54% 100.00% 100.00% 100.00% 100.00%

PU 93.24% 93.27% 98.19% 98.19% 98.64% 98.64%
MFPT 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
JNU 98.59% 98.59% 99.67% 99.67% 100.00% 100.00%

Table 2
Performance comparison on different datasets with varying amounts of labeled data for zero-shot testing.

Dataset 0.4% Labeled data 1.2% Labeled data 2% Labeled data
Accuracy F1-score Accuracy F1-score Accuracy F1-score

Merged 35.75% 29.15% 87.12% 87.05% 88.06% 87.99%
CWRU 91.21% 90.96% 97.41% 97.40% 99.83% 99.83%

PU 92.27% 92.15% 97.44% 97.44% 97.70% 97.70%
MFPT 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
JNU 99.47% 99.46% 99.72% 99.72% 99.10% 99.09%

5.5. Convergence rate of the fundamental model

In the cloud-edge collaborative framework proposed in
this paper, the model training process unfolds in three stages.
In the first stage, the cloud server utilizes a large amount
of mixed data from multiple unlabeled datasets for unsuper-
vised training. In the second stage, the cloud server performs
fine-tuning using a small amount of labeled samples from the
mixed datasets, thereby producing a foundation model. The
aim of the first two stages is to leverage the cloud server’s
abundant computational and storage resources to build a
foundational model with strong generalization capabilities,
which can be quickly fine-tuned with a small number of
target task samples. In the third stage, the edge server fine-
tunes the foundational model using a limited number of
labeled samples specific to the target task. Compared to
traditional methods of training a model from scratch, this
training paradigm effectively accelerates the model’s con-
vergence speed and enhances its performance. To validate
these conclusions, an experiment was conducted to evaluate
the convergence speed of BearingFM using the PU dataset
with 1.2% labeled data.

To substantiate these conclusions, an experiment was
conducted to evaluate the convergence speed of BearingFM
using the PU dataset, with only 1.2% of the data labeled.
The experimental results are depicted in Fig. 3. In this
figure, “Pretrain” denotes the model training process ini-
tiated with the pre-trained model’s weights as the starting
point, whereas “Normal” signifies training the model from
scratch. It is evident from the figure that initializing the
model with the pre-trained weights substantially accelerates
convergence.

Moreover, the pre-trained model, having been exposed
to a large corpus of unlabeled data, effectively assimi-
lates the underlying fault knowledge present in the data.

Fig. 3. Comparative of Convergence Speed between Efficient Fine-
Tuning and Direct Model Training.

Consequently, during the latter stages of training, when
the loss value stabilizes, the process that commences with
the pre-trained model demonstrates a markedly lower loss
value—approximately 60% of that observed when training
from scratch. This clearly indicates that the pre-trained
model confers significant advantages in terms of both model
performance and training efficiency.
5.6. Ablation experiment

The careful selection of augmentations is paramount in
contrastive learning, given their sensitivity to the choice of
augmentation methods (Chen et al., 2020). To validate the
effectiveness of the proposed sample augmentation method
based on bearing fault mechanisms, ablation experiments
were conducted on the CWRU dataset.

Fig. 4 reveals that, compared to traditional signal-level
data augmentation methods, the proposed mechanism-level
data augmentation method effectively enhances both accu-
racy and F1-score.
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Fig. 4. Accuracy and F1-score under different data augmentation
methods.

6. Conclusion

This paper proposes a cloud-edge collaborative semi-
supervised bearing fault diagnosis method empowered by
domain knowledge. The proposed application paradigm in-
tegrates cloud-based pre-training of a foundational model,
followed by precise domain-specific fine-tuning at the edge
layer. Leveraging a cloud-edge collaborative framework, it
provides computational power and data support for con-
structing the foundation model for bearing fault diagnosis.
The proposed domain knowledge empowered contrastive
learning method facilitates the construction of a founda-
tion model by extracting invariant features from vibration
signals of bearings. Compared to traditional fault diagnosis
models, BearingFM exhibits potent feature learning capabil-
ities, enabling it to abstract universal knowledge from data.
BearingFM possesses the capacity to concurrently perform
fault diagnosis tasks across a diverse array of mechanical
equipment bearings. When confronted with novel bearing
fault diagnosis tasks that deviate substantially from the pre-
training data, BearingFM can capitalize on the extensive
knowledge acquired during the pre-training phase as an
efficacious foundation. Leveraging a minimal quantity of
target training samples, BearingFM can rapidly adapt to the
new task.

The scale of the publicly available bearing dataset is
limited, so the model we built is just a developing foundation
model. Compared to foundation models like ChatGPT, there
is still a gap. However, this developing foundation model
serves as a stepping stone in building a truly comprehensive
and specialized foundation model for bearings and rotat-
ing devices in the future. Although the current amount of
data is insufficient, the method and framework we proposed
have the potential to support a comprehensive foundational
model. In our future work, we aim to enhance BearingFM
on three fronts. Firstly, the scope of the bearing fault di-
agnosis datasets will be further expanded to include data
from mechanical equipment bearings in specific industries,
such as semiconductor manufacturing. This expansion aims
to enhance the generalization performance of BearingFM
across more diverse fields. Secondly, we will investigate

methodologies for multi-domain alignment, involving the
isolated extraction of the classification module from the
comprehensive model, implemented as adapters, to facilitate
enhanced adaptability across diverse scenarios. Lastly, the
detection of unknown faults is equally crucial in industrial
fault diagnosis. Hence, we contemplate extending the appli-
cability of BearingFM to open-set fault diagnosis scenarios,
which is an important direction for future exploration.
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