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Abstract—With increasing pressure from customized demands,
discrete manufacturing systems face challenges due to fluctuating
resource requirements. These challenges hinder the synchro-
nization of production logistics (PL), which is essential for
coordinating resources and ensuring smooth production. Poor
synchronization will result in resources waiting on each other,
leading to delays and idle time. Accordingly, this paper proposes
ChatSync, a framework leveraging large language model (LLM)
and spatial-temporal knowledge reasoning to optimize resource
allocation, delivery, and monitoring in industrial applications,
particularly within the Industrial Internet of Things (IIoT) en-
vironment. First, the resource spatial-temporal graph (RSTG) is
constructed by integrating real-time IIoT data and expert opera-
tional experience, enhancing the knowledge base of LLM through
cross-domain knowledge fusion. Second, graph-based reasoning
optimization is presented, incorporating spatial-temporal, con-
textual, and relational reasoning mechanisms, enabling LLM to
achieve credible and responsible analysis and decision-making.
Third, the PL-oriented ChatSync framework with knowledge and
reasoning engines is proposed, supporting chat-based interactions
for resilient resource allocation, personalized suggestion, and pre-
cise traceability. A case study in air conditioning manufacturing
demonstrates that ChatSync outperforms existing benchmark
methods in various PL phases, achieving a delivery punctuality
rate of 91.2%.

Index Terms—Production logistics, reasoning optimization,
resource allocation, Industrial Internet of Things (IIoT), large
language model (LLM), responsible AI.

I. INTRODUCTION

PRODUCTION logistics (PL) focuses on in-plant logistics
and distribution activities, aiming to address untimely and
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inaccurate deliveries. As PL connects multiple production pro-
cesses by transporting materials and work-in-progress items, it
accounts for approximately 95% of the total execution time in
manufacturing [1]. Effective PL synchronization ensures that
operators, tools, and materials are available within a specified
time window and position, enabling production, assembly,
or transportation operations to commence and conclude as
planned [2]. However, production systems are rapidly tran-
sitioning from a paradigm characterized by fewer varieties
and large batches to one that supports multiple varieties in
smaller batches in Industry 4.0, with an anticipated future
shift toward customization and individualization in Industry
5.0 [3]. Although many efforts have been made to address
the increased complexity of PL due to this transition, such as
Kanban [4], which offers a straightforward and visual interface
for managing logistics [5], real-world implementation often
falls short of expectations.

Recently, the large language model (LLM) has emerged as a
transformative solution in industrial manufacturing processes
[6], [7]. In contrast to traditional methods, LLM allows users
to interact with systems through natural language [8]. Our
research team’s practical experience assisting many enterprises
in upgrading their production systems shows that no matter
how meticulously designed and sophisticated the system is,
its effectiveness is often significantly diminished during actual
implementation. Due to workers’ varying educational back-
grounds and levels of computer literacy, many users struggle
with retrieving necessary data or understanding the system’s
output [9]. This gap between system complexity and user
comprehension often leads to production inefficiencies. Given
this issue, conversation, which has been regarded since the
dawn of human society as the most efficient interaction mode,
offers a promising alternative [10]. Especially in the current
21st century, with the widespread use of smartphones, nearly
everyone can communicate through messaging apps like What-
sApp and WeChat. Therefore, a chat-based system powered by
LLM holds substantial potential for end users in the PL chain.
It can streamline operations by providing access to critical
information through a conversational interface, recommending
resource allocation plans, and offering handling suggestions to
minimize personal injury caused by improper operation.

However, despite significant advancements in recent re-
search on PL synchronization, the integration of LLM tech-
nology still presents several challenges:

1) How can real-time sensor data and multi-source knowl-
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edge be fully fused into a unified graph that integrates data and
knowledge domains? Data generated from Industrial Internet
of Things (IIoT) devices and knowledge extracted from stan-
dards document and expert experience are heterogeneous and
multi-scale. The absence of universal expressions that integrate
information and knowledge domains obstructs collaboration
between foundation models and LLM.

2) How can graph reasoning mechanisms be conducted
on the graph, offering precise insights into allocation recom-
mendation, operational suggestion, and resource traceability?
While LLM offers excellent logical inference based on natural
language processing (NLP), it may generate inaccurate insights
and unreasonable suggestions due to hallucinations, resulting
in production delays and resource misallocation.

3) How can LLM effectively assist different roles within
the industrial park, from workers to managers, by providing
tailored and interactive assistance through chat? Integrating
LLM into PL synchronization workflows requires careful
attention to ensuring ease of use, accuracy, and role-specific
adaptability.

This research aims to improve PL synchronization through
the integration of LLM technology and reasoning mechanisms.
The main contributions are threefold: (1) We propose a
novel approach for constructing resource status and knowledge
graphs by applying ontology modeling and semantic analysis
within LLM. These graphs, incorporating diverse perspectives,
are fused into a unified Resource Spatial-Temporal Graph
(RSTG), ensuring that ongoing activities in the physical
space are accurately reflected in the digital space. (2) Three
graph reasoning mechanisms built on the RSTG are proposed,
including spatial-temporal reasoning for dynamic decision
optimization, contextual reasoning for operational suggestion
refinement, and relational reasoning for resource traceability
improvement. These reasoning mechanisms assist the LLM
in achieving precise delivery within PL while minimizing
errors caused by hallucinations. (3) We present the LLM-
powered ChatSync framework, which provides role-specific,
interactive assistance. Chat-based interactions facilitate re-
source optimization for planners, operational guidance for
material handlers, and resource traceability for logistics co-
ordinators, thus enhancing overall efficiency and coordination
within the industrial park.

The paper is organized as follows: Section II reviews related
work. Section III introduces the overall framework of Chat-
Sync. Section IV and Section V focus on the knowledge engine
and reasoning engine included in ChatSync, respectively. The
performances of proposed framework are presented in Section
VI, and conclusions are summarized in Section VII.

II. RELATED WORK

A. Production logistics synchronization

The term “synchronization” originates from the Greek con-
cept of events “happening at the same time” or “agreeing in
time” [11]. Within the manufacturing domain, synchronization
refers to ensuring that the right components are delivered to
subsequent production stages precisely when required [12],

[13]. A prominent concept aligned with this principle is Just-
In-Time (JIT) production, which prioritizes the synchroniza-
tion of processes to ensure that “all processes produce the nec-
essary parts at the necessary time, maintaining only the mini-
mum stock required to link processes together” [14]. However,
as customer demands become increasingly individualized and
dynamic, JIT, which was primarily proposed in Industry 3.0
with a focus on automation, falls short in addressing the
requirements of on-demand services, customized production,
and resilient manufacturing in the eras of Industry 4.0 and
Industry 5.0 [15].

Consequently, research efforts have shifted toward synchro-
nized PL to enable more flexible, resilient, and sustainable
production management [16], [17]. Guo et al. [18] proposed
a synchronization mechanism combining mixed-integer linear
programming and constraint programming to solve PL tasks,
addressing precedence, spatial, and temporal constraints for
small to medium problems. Pereira et al. [19] introduced
a hybrid scheduling framework using greedy methods, local
search, simulated annealing, and variable neighborhood search
to select optimal algorithms for various scenarios. Zhang et al.
[20] developed a nine-layer intelligent digital twin framework
with an artificial bee colony algorithm to improve logistics
timeliness and equipment utilization in flexible production
planning. Zhao et al. [21] introduced a graduation-inspired
system that uses smart tickets to synchronize PL workflow.
Delivery tickets manage shipment timing, resource tickets co-
ordinate tools and personnel, and execution tickets oversee task
performance. The architecture employs the genetic algorithm
for optimizing resource scheduling, allowing the system to
adapt to variability.

Despite these advancements, most existing approaches focus
predominantly on static synchronization strategies, overlook-
ing the dynamic nature of real-world manufacturing environ-
ments. These approaches often fail to account for real-time
disruptions such as demand fluctuations, machine breakdowns,
and unforeseen delays. This gap underscores the urgent need
for adaptive, resilient synchronization that dynamically re-
sponds to real-time changes, enabling more agile and respon-
sive production systems in Industry 4.0 and 5.0. To bridge
this gap, we leverage IoT data to construct spatial-temporal
knowledge of PL resource, which provides precise tracking of
evolving production states. By integrating this timely informa-
tion into the synchronization process, our approach facilitates
more responsive and coordinated utilization of resources.

B. Dynamic resource allocation focused on the execution
stage

The manufacturing stages can be broadly categorized into
planning, scheduling, and execution [22]. Planning focuses on
the strategic, long-term organization of overarching project
activities [23]. Scheduling entails breaking down major ac-
tivities into detailed work packages and defining their specific
content and timelines [24]. Execution emphasizes the flexible
adjustment of task implementation and allocating operations to
specific workers within designated time windows [25]. Among
these stages, the execution stage is particularly critical for
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improving PL synchronization, as it ensures both adaptability
and stability in the face of uncertainties, such as fluctuations in
production demand, frequent changes in resource availability
and variability of order arrivals and delivery arrangement [26],
[27].

To effectively address these challenges, extensive research
has been devoted to exploring dynamic resource allocation
and resilient decision-making strategies during this stage.
Some studies advocate for data-driven approaches to prioritize
resource allocation. Zhang et al. [28] proposed an analytical
target cascading model, where manufacturing resources are
linked at various levels to minimize cost, time, and energy
deviations. Zhao et al. [29] introduced a resource allocation
method using deep learning and graph-inspired algorithms to
optimize a real-time resource graph based on time windows
and capacity limits. With advancements in cloud computing
and AI, new technologies are accelerating innovative solutions
[30]. Pan et al. [31] proposed a multi-level digital twin system
using edge, fog, and cloud computing to optimize efficiency
and cost under varying dynamics. Aron et al. [32] developed
a material handling system integrating cloud computing and
machine learning, enabling demand-responsive adaptation and
reconfigurable services in line with the Physical Internet.

Although previous studies have proposed different resource
allocation methods in manufacturing, these approaches use
greedy-based or distance-based ideas to handle the alloca-
tion problem according to the current environment without
considering future resource demands at various sites. This
lack of foresight often results in resources being dispatched
from distant locations when new demands arise, rather than
enabling proactive planning and optimized distribution. To
address this limitation, we introduce reasoning mechanisms
that proactively consider potential resource constraints and
dynamic task requirements across PL stages, thereby enabling
more efficient and forward-looking resource allocation.

C. Manufacturing-oriented large language models

Recently, LLM, represented by ChatGPT [33], has rev-
olutionized NLP by enabling machines to comprehend and
generate human-like text [34]. These models support natural
interaction, advanced reasoning, and context-aware responses,
offering significant potential to enhance operational efficiency
and address complex challenges through their assistance in
perception, decision-making, and execution processes [35].
By enabling seamless integration with existing manufacturing
systems and providing natural language interfaces, LLM fa-
cilitate human-machine collaboration, forming more intuitive
and efficient workflows.

Recent research has focused on adapting LLM for manufac-
turing tasks. Zhou et al. [36] proposed CausalKGPT, an LLM
enhanced with domain-specific knowledge graphs to diagnose
aerospace manufacturing defects, providing actionable insights
for defect mitigation. Wang et al. [37] used an LLM to improve
cobot navigation by interpreting natural language commands
and generating executable code for tasks based on a 3D
point cloud model. Colabianchi et al. [38] developed a digital
assistant powered by an LLM to enhance assembly processes,

using retrieval-based mechanisms and optimized prompts to
improve response reliability and reduce hallucinations. Fan
et al. [39] proposed an embodied intelligence framework
for autonomous industrial robots, in which a GPT-4-powered
LLM functions as an agent responsible for decision-making
within a simulation environment, demonstrating the potential
of LLMs in manufacturing automation. Tsushima et al. [40]
eveloped an LLM-driven robotic assistance system designed
to support human workers in the automobile manufacturing
industry. By enabling flexible task planning through natural
language dialogue, the system allows robots to interactively
generate and execute work plans in response to human input.
Yu et al. [41] presented a knowledge graph-enhanced LLM ap-
proach for dynamic rescheduling in human-robot collaborative
disassembly tasks, where the LLM provides language-based
task reordering suggestions, and the knowledge graph ensures
constraint validation and resource dependency management.

Despite the growing interest in applying LLM and knowl-
edge graphs in manufacturing, their application in complex
decision-making scenarios remains limited. On the one hand,
the application of knowledge graphs has predominantly fo-
cused on knowledge dissemination tasks such as troubleshoot-
ing guidance and instructional support, while their role in
dynamic decision-making across multi-phase PL workflows
remains largely unexplored. Additionally, due to the low inter-
pretability of LLM and their susceptibility to hallucinations,
significant challenges persist in ensuring the credibility of
the recommendations generated by these models. To address
these gaps, this research proposes the LLM-driven ChatSync
framework, which integrates a knowledge engine to facilitate
context-aware suggestion generation in specialized domains.
Furthermore, it incorporates a reasoning engine designed to
support responsible decision-making across different phases,
thereby enhancing synchronization within PL workflows.

III. OVERALL FRAMEWORK

The ChatSync framework, as illustrated in Fig. 1, adopts a
multi-layered structure to address the PL multifaceted chal-
lenges by integrating domain-specific knowledge, real-time
data analysis, and graph reasoning. It comprises the component
layer, which serves as the knowledge and computational foun-
dation; the reasoning layer, which provides targeted analytical
capabilities for dynamic decision-making; and the application
layer, which bridges intelligent insights with practical user
interactions. Each layer is intricately connected, enabling the
system to transform raw data into actionable recommenda-
tions, optimize resource allocation, enhance traceability, and
ensure operational resilience across varying phases of the
logistics workflow.

1) Component layer: The component layer serves as the
foundation of the overall framework, offering a domain-
specific vertical knowledge base and essential reasoning tools.
The layer is structured around two primary modules: the
knowledge engine and the reasoning engine. The knowledge
engine integrates general, professional, and expert knowl-
edge, progressively organizing this information into a re-
source knowledge graph. Concurrently, real-time data from
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The production line in Zone F urgently
requires a batch of cooling fan blades.
Could you recommend a plan to ensure
delivery by 10 AM?

I suggest assigning John Lam (Employee ID:
D2961) to operate forklift (Vehicle ID:
FL205) and pick up the required materials
from Warehouse 3, then deliver them to
Zone F.

9:00 AM

Yes, I am willing to do this task.

Good morning, John Lam. There is a
task that requires operating the FL205
forklift to transport 50 sets of cooling
fan blades to Zone F. The forklift is
located next to shelf 5 in Zone B, and
the relevant materials are placed on
shelf 12 in Zone C. Are you available
to undertake this task?

That sounds like a solid plan. Please ensure
he picks up and transports the 50 sets of
cooling fan blades to the destination.

Thanks for the update. I'll ensure
the blades are quickly transported
to Zone F.

Please note that there is a delay
with a batch of cooling fan
blades. The followings are the
logistics details:
(1) 9:05 AM: The task of

transporting the fan blades was
assigned to John Lam.

(2) 9:25 AM: The blades were
loaded onto forklift FL205.

(3) 10:02 AM: The blades arrived
at Zone D, which is 3 km away
from the destination.

Allocation MonitoringDelivery1 2 3
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Thanks for confirming. Please pay
attention during transport: (1) Utilize
vibration-dampening supports to
absorb shocks and minimize the risk
of damage during transit … …

Recommend resource allocation plan
for Production Planner

Provide the operational suggestion 
for Material Handler

Improve resource traceability 
for Logistics Coordinator

Provide foundational data Provide computational tools

Fig. 1. The overall framework of the ChatSync.

IIoT devices is analyzed to construct a resource status graph,
which captures the dynamic states of resources. These two
graphs are fused into an RSTG, effectively encoding spatial
and temporal relationships in the data, enabling a compre-
hensive representation of resource interactions. The reasoning
engine equips the framework with powerful computational
reasoning capabilities. It incorporates the graph convolutional
network (GCN) to process heterogeneous nodes of knowledge
graph, extracting structural and relational insights. Memory
updating mechanisms enhance the LLM’s ability to adapt
dynamically to changing information, while the transformer
model, powered by attention mechanisms, excels at modeling
sequential dependencies and context awareness, enhancing
dynamic resource management and resilient decision-making.

2) Reasoning layer: The reasoning layer underpins the
analysis and decision-making of the LLM, utilizing multi-
ple reasoning mechanisms on RSTG to address critical PL
challenges. It encompasses three modules, spatial-temporal,
contextual, and relational reasoning, each designed to pro-
vide targeted solutions to distinct operational needs. Spatial-
temporal reasoning analyzes spatial dependencies and tem-
poral dynamics to recommend resilient resource allocation
plans for production planners. This ensures efficient resource
deployment under dynamic and uncertain conditions, enabling
the system to respond to evolving production demands with
agility and minimal disruption. Contextual reasoning integrates

task-specific information, such as material attributes and op-
erational constraints, to provide precise and actionable sug-
gestions for material handlers, reducing damage to materials
and minimizing personal risk caused by improper operation
during transportation. Relational reasoning aims to analyze
the historical interaction data and entity relationships between
personnel and resources to improve resource traceability, help-
ing logistics coordinators monitor and manage the flow of
resources with clarity and precision.

3) Application layer: The application layer empowers the
ability to interact with users by providing targeted feedback
tailored to different phases. During the allocation phase, the
system recommends actionable and resilient resource alloca-
tion plans for production planners. Specifically, it suggests
the assignment of specific personnel, vehicles, and materials
to meet urgent production demands, ensuring that resources
are optimally deployed to maintain operational efficiency
under time constraints. In the delivery phase, the system
directly engages with material handlers, offering context-aware
operational suggestions to enhance transportation reliability
and safety. For example, it may recommend using vibration-
dampening measures to protect designated fragile goods, miti-
gating risks of damage caused by external shocks or improper
handling. Lastly, during the monitoring phase, the system can
improve resource traceability by generating comprehensive
and real-time updates for logistics coordinators. The updates
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include critical details such as task assignments, timestamps,
current locations, and progress logs, allowing coordinators to
address delays efficiently and ensuring accurate delivery to the
intended destination.

IV. SPATIAL-TEMPORAL KNOWLEDGE REPRESENTATION
AND FUSION

In this section, we focus on the knowledge engine of
ChatSync, which integrates sensor data from the information
domain and operational guidance from the knowledge domain.
By analyzing and fusing the resource status graph and the
resource knowledge graph, we construct the RSTG. This fused
representation serves as the foundation for subsequent reason-
ing, enabling the system to capture both real-time dynamics
and domain expertise in a unified structure.

A. Resource status graph in information domain

In manufacturing enterprises, numerous uncertain factors,
including personnel, equipment, materials, and environmental
conditions, often lead to issues such as degraded delivery
performance of PL [42], [43]. To achieve accurate delivery
and provide actionable insights for more informed dispatching
decisions, we systematically collected, processed, and inte-
grated data in the information domain and conducted the
resource status graph, which includes the physical topology
of resources, inter-resource relationships, and manufacturing
events. It can reflect the real-time location, movement trends,
and historical job situations of various mobile resources,
forming a digital twin of the operational environment.

Generating and updating a resource status graph can be
structured across three levels, as shown in Fig. 2. The physical
layer aims to acquire positional data for various resources.
Specifically, Specifically, RFID tags are affixed to materials,
and readers are used to scan these tags to obtain detailed
information about the items. Bluetooth low energy (BLE) tags
are attached to vehicles, and the spatial coordinates can be
determined by analyzing the received signal strength indication
[44]. Wi-Fi technology is employed for workers to estimate
their location through the signal link with mobile phones,
eliminating the need for bulky positioning devices [45].

The data collected from the physical layer is subsequently
transmitted to the Cyber-Physical Internet (CPI) gateway, a
specialized component designed to analyze spatial-temporal
relationships and trends among PL resources [46]. Through
core functions such as definition, filtration, interaction, and ag-
gregation, the CPI gateway can continuously monitor resource
status and proactively detect the occurrence and execution of
transportation events. For instance, it can identify when an
operator begins driving a vehicle toward a destination or when
designated materials have arrived at the required resource
point. Meanwhile, it ensures that the resource status remains
dynamically updated, providing a comprehensive foundation
for optimizing PL synchronization.

At the digital level, a centralized cloud database utilizes
structured data from CPI gateway to construct the resource
status graph, a dynamic and heterogeneous representation
of spatial and temporal relationships among system-wide

Physical
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Fig. 2. Construction and update of resource status graph.

resources. The graph consists of diverse entities as nodes,
including operator, vehicle, material, and site, each annotated
with essential attributes such as type, entity ID, quantity,
and position. Directed edges between nodes signify tasks or
interactions, enriched with detailed metadata such as execu-
tion statuses (e.g., in progress or completed) and associated
timestamps. As a high-level abstraction that translates raw data
into actionable insights, the resource status graph provides a
framework that enhances situational awareness by offering a
clear overview of resource states, interdependencies, and exe-
cution progressions, enabling more efficient task coordination
and resource optimization.

B. Resource knowledge graph in knowledge domain

Although PL guideline documents and safety management
standards are extensive and detailed, their integration into daily
operational processes remains insufficient [47]. While many
companies have adopted different strategies and algorithms
to store operational data and established rule-based retrieval
systems to issue reminders, these solutions often produce rigid
and redundant reminders. Recently, the integration of artificial
intelligence, particularly LLM, has been proposed to improve
workflow. However, despite the potential for LLM to com-
prehend contextual information and deliver domain-specific
knowledge through fine-tuning, they remain susceptible to
hallucinations and the generation of incorrect information [48].

Therefore, we developed a knowledge graph-based retrieval
system that enables efficient semantic search and provides a
more reliable tool for suggestion generation. As shown in Fig.
3, to construct a comprehensive and high-quality knowledge
graph, we integrated general, professional, and expert knowl-
edge from multiple sources, each contributing to different
aspects of the knowledge representation. General knowledge
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Text corpus

(a) Multi-source knowledge extraction (c) Resource knowledge graph generation(b) LLM-empowered text analysis 

KG entity KG relation

rebar

gloves

operator

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

require

product

glass

machine

wear

equip with

used by

vehicle carry

𝑟1𝑟1

𝑟1

𝑟2
𝑟3

𝑟4

𝑟5

𝑟1

𝑟6

Transformer-based Model

'lo
gi

st
ic

s…
'

'物
流

…
' Encoder Decoder

Optical Character Recognition Model

x x'

C
N

N

M
L

P

S
of

tm
ax

R
N

N

…
 …

Speech Recognition Model

'p
ro

du
ct

…
'Acoustic processing Decoding

feature

D(x)A(x)

Entity recognition

Text chunk 1

Text chunk 2

Text chunk n

… …
Text

chunking

Node (id='rebar', type='Concept'),
Node (id='gloves', type='Concept'),
Node (id='operator', type='Concept'),

Relationship (source_id='rebar', target_id='gloves', relation='require'),
Relationship (source_id='machine', target_id='gloves', relation='product'),
Relationship (source_id='vehicle', target_id='glass', relation='carry'),

... …

... …

Large language model
Handwritten

note

Standard 
document

Interview
Relation extraction

prompt

prompt

support

generate

Fig. 3. Resource knowledge graph generation.

includes open-domain data that cover basic information, which
creating a solid linguistic foundation for understanding knowl-
edge graphs. Professional knowledge pertains to domain-
specific files, including industry standards and internal process
documents. Such documents offer detailed operation steps,
enabling users to receive reminders that align with industry
norms and safe management requirements. Expert knowledge
is derived from the experiences of industry practitioners and
logistics professionals. This type of knowledge is more in-
formal and typically consists of feedback collected through
interviews, field reports, and observational data. It is often less
structured and can take various forms, from handwritten notes
to interview transcripts. While challenging to formalize, expert
knowledge adds significant value by providing experience-
based suggestions to avoid personal injury from day-to-day
operations.

Building upon this foundation, the processing of multi-
source knowledge follows distinct procedures tailored to each
data type. For standard documents, Transformer-based models
such as BERT [49] are employed to extract and preprocess
textual content. Specifically, the text is first normalized by re-
moving non-printable characters, unifying Unicode encodings,
and standardizing punctuation and whitespace. Subsequently,
all non-English paragraphs are translated into English to
ensure consistency in downstream processing. For handwritten
notes, the process begins with scanning or photographing the
content, followed by optical character recognition models [50],
which are trained to recognize various handwriting styles and
convert complex images into structured text. Likewise, audio
data, like interview recordings, undergoes preprocessing via
speech recognition models [51] to convert spoken language
into accurate written text. Then, a unified text corpus is gener-
ated and will be divided into smaller, semantically meaningful
units, such as sentences or paragraphs, to enhance processing
efficiency and improve the granularity of information extrac-
tion for downstream tasks.

Given the enormous volume of text chunks, a bottom-
up approach is employed to construct the resource knowl-
edge graph. In this process, a native LLM is utilized for
entity recognition and relation extraction. By incorporating

a carefully designed prompt, the native LLM can effectively
identify context-specific entities, such as material names, prod-
uct specifications, and process steps, while also discerning
complex interrelationships between them. The native LLM
generates structured outputs in the form of entity-relation
triplets, which serve as the foundation for constructing the
resource knowledge graph. Entities are represented as nodes,
and the relationships between them are captured as edges,
enabling a scalable and efficient representation of complex
knowledge structures.

C. Resource spatial-temporal graph based on cross-domain
knowledge fusion

To provide accurate, real-time data alongside meaningful
contextual knowledge, diverse perspectives from the infor-
mation and knowledge domains are integrated into a uni-
fied graph structure, forming the RSTG. The cross-domain
knowledge fusion process is illustrated in Fig. 4. Initially, the
critical attributes, which encompass the unique characteristics
of resources and will direct effort on operational suggestions,
are identified for nodes within the information domain. For
example, the product name and specifications of the material
nodes, the type and load capacity of the vehicle nodes, and the
qualifications and historical task performance of the operator
nodes are considered.

Subsequently, the nodes in the knowledge domain, which
represent concepts in the resource knowledge graph, are used
to enrich the contextual information. For each previously
selected node, the system searches for similar nodes in the
resource knowledge graph that describe the same object from
different perspectives. Once such nodes are identified, a di-
rected edge is established between them, labeled as “related,”
signifying the discovery of a potential new pattern. As illus-
trated in Fig. 4, when the material node is labeled “fan blade,”
it serves as a digital representation of a specific batch of fan
blades in the physical space. This allows the material node to
be connected to the “fan blade” node in the knowledge domain
via the “related” edge, enabling the RSTG to access both the
information domain and knowledge domain attributes of the
same object simultaneously.
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Fig. 4. Cross-domain knowledge fusion process.

After all patterns have been recognized, the RSTG, with
spatial interconnectivity capturing the physical relationships
between resources and temporal alignment tracking their status
over time, will be constructed. Structurally, as depicted in
the visualization in the lower part of the figure, the RSTG
maintains the original form of both the resource status graph
and the resource knowledge graph while enhancing them
with additional, meaningful edges. Functionally, the RSTG
bridges the gap between the real-time status of resources
and a more abstract, knowledge-driven understanding of these
resources, offering a robust foundation for dynamic analysis
and decision-making.

V. SPATIAL-TEMPORAL KNOWLEDGE REASONING
OPTIMIZATION

The reasoning engine is the core of ChatSync, driving
dynamic decision-making and suggestion generation in the
execution stage. Unlike conventional knowledge reasoning,
which typically focuses on the extraction and application of
static domain knowledge, the knowledge reasoning optimiza-
tion in PL emphasizes the dynamic, real-time adaptation of de-
cisions and actions to changing operational conditions. In this
section, we introduce the three pivotal reasoning optimization
mechanisms in the reasoning layer: spatial-temporal reasoning
for optimizing resource allocation, contextual reasoning for
delivering personalized suggestions, and relational reasoning
for improving resource traceability.

A. Spatial-temporal reasoning for resource allocation recom-
mendation

Spatial-temporal reasoning focuses on analyzing spatial
dependencies and temporal dynamics of nodes, which aims
to generate optimized resource allocation plans by evaluating
the suitability of interactions between resources over time and
space. To facilitate such analysis, the RSTG is mathematically
represented as a directed graph, denoted by G = {V, E}. Here,
V = {v1, . . . , vN} is a set of nodes, each representing a
resource node in information domain or a concept node in
knowledge domain, and E ⊆ {(vi, vj)|vi, vj ∈ V and i ̸= j}
contains edges between nodes. For a given node vi, it has two
basic state vectors, namely message state mi(t) and memory
state si(t). Whenever interactions occur between resources in
the real world, such as loading specified material node i onto
a vehicle node j at time t, an event eij(t) will occur. At this
point, the state of the newest message regarding this event for
both nodes can be expressed as

mi(t) = Encoder
(
si
(
t−

)
, sj

(
t−

)
,∆t, eij(t)

)
, (1)

mj(t) = Encoder
(
sj

(
t−

)
, si

(
t−

)
,∆t, eij(t)

)
, (2)

where si(t−) and sj(t
−) represent the memory state before the

current time, ∆t indicates the time interval since last resource
interaction, and Encoder(·) is an embedding function which
transforms resource information to high-level representations.
To be simple, we set Encoder(·) as a concatenate operator,
i.e., it concatenates the inputs to formulate the graph node
representations.

As time progresses, there will be an increasing number of
directed edges representing interaction events, and each node
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in the RSTG may become connected to a large number of other
nodes. For more effective feature propagation and learning,
an aggregation operation AGG(·) is introduced to integrate a
node’s historical message states, formulated as

m̄i(t) = AGG ({mi(t− p) | 0 < p ≤ t}) . (3)

Here, p indexes the lag between the current time t and past
time steps, and mi(t− p) denotes the message state of node i
at a previous interaction. As an aggregation operator, AGG(·)
has several variants: the most recent aggregator retains only
the latest value, the maximum aggregator preserves the highest
value, and the average aggregator computes the mean of all
values [52]. To emphasize trends in resource changes over a
recent period, the mean aggregator is ultimately adopted.

For compressed representation of each node’s history and to
capture long-term dependencies, the previous memory states
of each node si(t

−) and the aggregated message states mi(t)
from past times are used to infer the updated memory states.
The updating process is expressed as

zi(t) = σ
(
WZ

i ·
[
si
(
t−

)
∥ −
mi(t)

]
+ bZi

)
, (4)

ri(t) = σ
(
WR

i ·
[
si
(
t−

)
∥ −
mi(t)

]
+ bRi

)
, (5)

where WZ
i and WR

i are learnable weight matrices, while bZi
and bRi are learnable biases. ∥ represents concatenation opera-
tion which has a lower precedence than addition and multipli-
cation operations, and σ(·) denotes the sigmoid function. From
the perspective of function, (4) primarily determines whether
the input at the current time step should be updated into
the memory state, flexibly controlling the impact of current
input on the memory state, thereby avoiding the vanishing
gradient problem during training. (5) decides whether to ignore
previous memory and reset the memory cell at the current time
step.

To ensure that the memory state of nodes reflects short-
term resource flow characteristics rather than persisting out-
dated states indefinitely, we employ the computational method
depicted in (6) to allow nodes to forget some non-critical
features. Subsequently, in conjunction with the values of the
update module, each node utilizes (7) to adaptively achieve
the self-updating of the memory state based on both historical
and real-time states.

∼
si(t) = σ

(
WS

i ·
[
ri(t)⊙ si

(
t−

)
∥ −
mi(t)

]
+ bSi

)
, (6)

si(t) = (1− zi(t))⊙ si
(
t−

)
+ zi(t)⊙

∼
si(t), (7)

where W s
i and bsi are weight matrix and bias of node i,

respectively. ⊙ denotes element-wise dot product.
When the memory state si(t) is obtained, the final spatial-

temporal feature value is computed by L graph attention
layers. The output of l-th layer can be given by

h
(l)
i (t) = GraphAttn

(
h
(l−1)
i (t),Ni(t)

)
, (8)

where h
(l−1)
i (t) is the output of the previous layer, and

Ni(t) represents the set of neighboring nodes of node i.
GraphAttn(·) denotes a graph attention layer. Notably, the

initial input representation for each node is given by h
(0)
i (t) =

si(t). For each graph attention layer, it is defined as

GraphAttn
(
h
(l−1)
i (t),Ni(t)

)
=

σ
(
h
(l−1)
i (t) ∥WA · (head1 ∥ · · · ∥ headH)

)
, (9)

where H represents the total number of attention heads, and
WA is the transformation matrix. headp is the p-th output of
the scaled dot-product attention, which is transformed using
three matrices representing the query, key, and value, and it is
obtained by

headp = softmax

Q(l)(t)WQ
p WK

p
T
K(l)(t)

T√
len

(
Q(l)(t)WQ

p

)


· V (l)(t)WV
p , (10)

where WQ
p , WK

p , and WV
p are the query, key, and value

transformation matrices of the p-th head, respectively. T
denotes the transpose operation of a matrix.

Since each head focuses on different aspects, the trans-
formation matrices are different from each other. The query
Q(l)(t) represents the content the model focuses on, the
key K(l)(t) is a vector representation used to compare the
similarity between the query and each position in the input
sequence, and the value V (l)(t) contains the information to
be attended. They can be expressed by

Q(l)(t) = h
(l−1)
i (t) ∥ ϕ(0), (11)

K(l)(t) = V (l)(t)

= h
(l−1)
j (t) ∥ eij (tj) ∥ ϕ (t− tj) , (12)

where j ∈ Ni(t) and tj ≤ t. eij(tj) is the latest event
information associated with neighbor node j, and tj is the
occurrence time of the corresponding event. ϕ(·) is a time
encoding method presented in Time2Vec [53], which can
convert the time points in the time series into continuous vector
representations, thus better capturing the periodicity, trends,
and correlations of time. Ultimately, the output of multiple
graph attention layers will be stored as spatial-temporal feature
vectors of the corresponding node, i.e., stf i(t) = h

(L)
i (t).

When a new resource request arises, the system leverages
spatial-temporal reasoning to identify the most appropriate
node to fulfill the current demand, thereby generating an
optimal allocation plan. The process begins with the selection
of candidate nodes, expressed as

Vf = Filter (V, δreq, t) , (13)

where δreq denotes the resource demand details, including
the type, specification, quantity, and location of the required
resources. Filter(·) is the filtering function designed to ex-
tract a subset of nodes Vf from the complete set V in the
graph, ensuring that these candidates satisfy the requirements
specified by δreq and are available at time t.



9

Subsequently, the spatial-temporal suitability score for all
candidate nodes in Vf is computed as

φi,j = WE ·
(
ReLU

(
Φf ∗ stfi(t)

)
⊙ReLU

(
Φg ∗ stfj(t)

))
+ bE . (14)

where ∗ represents convolution operator, Φf and Φg are two
learnable convolution filter, WE and bE denote learnable
parameters, respectively, and ReLU(·) is a nonlinear acti-
vation function. This computation comprehensively captures
the temporal and spatial dependencies between candidate and
target nodes. A higher φi,j value indicates a more favorable
allocation, reflecting greater benefits achieved at a lower cost
when assigning resource node i to meet the requirements of
node j.

Finally, we use the TopRank function, which will return the
values and indices of the selected node with highest spatial-
temporal suitability score, to derive the recommended resource
allocation plan Srec, which can be expressed as

Srec = TopRank ({φi,j , i ∈ Vf , j ∈ δreq}) . (15)

B. Contextual reasoning for personalized operation sugges-
tion

Contextual reasoning is designed to provide personalized
operational suggestions by identifying relevant knowledge
nodes and constructing focused subgraphs. It aims to mitigate
risks such as material damage and personal injury caused by
improper handling during transportation, thereby enhancing
operational safety and efficiency. To achieve this, contextual
reasoning begins by representing the textual attributes of nodes
and edges. Let xv and xe denote the sequential text associated
with a node v ∈ V or an edge e ∈ E . The feature vectors of
knowledge nodes are initialized using pre-trained Embedding
Models (EM), such as BGE [54], with the embeddings stored
in a nearest-neighbor data structure. Specifically, given xv as
the textual attribute of node v, its representation zv can be
expressed as (16). The similar preprocessing method is also
applied to edges.

zv = EM(xv). (16)

When a material node vm becomes a multi-hop neighbor
of an operator node in the RSTG, it indicates that an operator
is performing a loading or unloading task associated with the
material node. To generate operational suggestions for the task,
relevant nodes and edges containing the necessary knowledge
are identified as

V∗ = TopN ({Sim(zm, zv), v ∈ V} ,Θ), (17)

where zm represents the embedding of node vm, and Sim
measures the similarity between the text embeddings. The
TopN operation sorts the nodes in descending order of
similarity and retrieves the top Θ elements.

Next, a subgraph G∗ is constructed, encompassing the
selected relevant nodes V∗ and the edges E∗ between these re-
trieved nodes. This subgraph provides two key benefits. Firstly,
it filters out irrelevant nodes and edges that are unrelated to the
ongoing task, which helps prevent irrelevant information from

overshadowing useful data and ensures that the subsequent
processing by the LLM remains focused. Secondly, it enhances
computational efficiency by maintaining a manageable graph
size, enabling the graph to be translated into natural language
and input into the LLM for analysis.

G∗ = {V∗, E∗ ⊆ {(v̂i, v̂j)|v̂i, v̂j ∈ V∗}} . (18)

To leverage the text analysis capabilities of LLM, the
subgraph G∗ is transformed into a textual format by flattening
the textual attributes of its nodes and edges. Additionally, the
text embedding zm of the material node is concatenated to
represent the query context. Let the textual flattening operation
be denoted as Textualize(·), and the process can be expressed
as

Xreq = CON(Textualize(G∗), zm). (19)

Simultaneously, to address the challenges of fatigue and
information overload stemming from repetitive reminders,
contextual reasoning integrates dynamic prompts to deliver
personalized suggestions tailored to diverse work scenarios. By
leveraging historical operational data, the content of prompts is
dynamically adjusted, ensuring the LLM based on contextual
reasoning can provide practical and context-sensitive guidance
aligned with actual work requirements. To enhance the rel-
evance and efficacy of the prompts, we classify them into
four predefined categories, each aligned with specific worker
behaviors and performance patterns:

• Apprentice Prompt: For operators with minimal or
no prior interaction with the current material type, this
prompt offers detailed, step-by-step instructions to facil-
itate learning and reduce the likelihood of errors.

• Master Prompt: Designed for operators with a proven
track record of accurate and efficient task execution for
the same material, this prompt prioritizes brevity by
focusing on critical operational steps, thereby minimizing
cognitive load and streamlining information delivery.

• Misoperation Prompt: Aimed at operators who have
previously selected incorrect vehicles, this prompt pro-
vides a concise reminder to verify vehicle selection,
reducing the risk of future misallocations and ensuring
proper asset utilization.

• Deviation Prompt: Targeted at operators with a history
of reaching incorrect destinations, this prompt aims to
reinforce task-specific details, particularly destination-
related instructions, to mitigate delivery delays and en-
hance operational accuracy.

The personalize prompt selection mechanism can be for-
malized as

P∗ = argmax
η

Evaluate (No(t),Pη, vm) , (20)

whereNo(t) represents the adjacent nodes of the operator node
vo in the RSTG. These nodes correspond to objects involved in
the task, such as vehicles, materials, and sites, while the edges
encode task execution details, including timestamps, destina-
tions, execution statuses, etc. Pη ∈ {Papp,Pmas,Pmis,Pdev}
is the prompt set. Evaluate serves as a scoring model to assess
the relevance of each prompt category, with the highest-scoring
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Algorithm 1: Target Identification
Input: Conditions set C and complete set of nodes V

in RSTG
Output: Detailed information F of target node v∗

1 initialize an empty priority queue Q ;
2 initialize an empty visited set Λ;
3 initialize v∗ ← ∅;
4 add a random subset of V of size k into Q;
5 while Q is not empty do
6 extract the first node from Q and assign it to vcur;
7 if vcur satisfies all conditions in C then
8 set v∗ to vcur as the target node;
9 break;

10 end
11 if vcur /∈ Λ then
12 add vcur to Λ to avoid repeat visit; foreach

vnext ∈ Ncur(t) do
13 if vnext /∈ Λ then
14 add vnext to the priority queue Q for

further exploration;
15 end
16 end
17 end
18 end
19 if v∗ = ∅ then
20 return None;
21 end
22 else
23 do Algorithm 2 with the parameter v∗;
24 end

prompt selected as P∗, which is subsequently input into the
LLM.

Finally, the concatenated knowledge tokens Xreq and the
dynamically selected prompt P∗ are fed into a pretrained LLM
with frozen parameters θ. The model generates a probability
distribution over the output sequence conditioned on the input
as follows:

pθ(Y |[Xreq ∥ P∗]) =

T∏
i=1

pθ(yi|y<i, [Xreq ∥ P∗]), (21)

where T denotes the total number of tokens in the out-
put sequence. The LLM takes as input a sequence of to-
kens and models the conditional probability of each sub-
sequent token given the preceding context, formulated as
p(yT |y1, . . . , yT −1). The generated output sequence is de-
noted by Y = (y1, y2, . . . , yT ), which is interpreted as a set
of operational suggestions delivered to the operator.

C. Relational reasoning for resource traceability improvement

Relational reasoning aims to enhance the ability to trace
resources, enabling logistics coordinators to monitor logistics
effectively and address potential delivery delays. Within the
ChatSync framework, relational reasoning is activated under
two scenarios. In the first scenario, when a logistics coordi-
nator provides specific resource description information and

inquires about its logistics progress, the relational reasoning
utilizes the target identification algorithm to locate the corre-
sponding resource node within the RSTG. Once the target node
is identified, the connectivity analysis algorithm is employed
to perform a retrospective analysis, delivering a comprehen-
sive account of the node’s interaction history and identifying
potential causes of delays. The second scenario is triggered
when IIoT-based data of a certain node updates reveal that the
current time has exceeded the anticipated delivery deadline and
the current location does not align with destination. In such
cases, the system directly invokes the connectivity analysis
algorithm to generate a detailed traceability report. Unlike the
former scenario, the target identification algorithm is skipped
because the position and structural context of the problematic
node are already identified during its data update process,
which eliminates the need to search for target node.

Algorithm 2: Connectivity Analysis
Input: Target node v∗

Output: Interaction report of the target node
1 initialize historical interaction information F ← ∅;
2 initialize visited edges set Ξ← ∅;
3 Function Tracing(v):
4 initialize pending edge list Ω← ∅;
5 foreach edge e in v.links do
6 if e /∈ Ξ then
7 add e to Ξ to avoid repeat visit;
8 record the event information of e into F ;
9 add e to Ω for further exploration;

10 end
11 end
12 while Ω is not empty do
13 find the edge enext with the earliest timestamp

from Ω;
14 remove enext from Ω;
15 call Tracing(enext);
16 end
17 call Tracing(v∗);
18 generate interaction report using F ;

Next, we will provide a detailed description of the core
algorithms used in relational reasoning. The target identifica-
tion algorithm, outlined in Algorithm 1, leverages a priority
queue Q to traverse the RSTG and find the target node v∗

that satisfies the specified resource description C. Initially, k
nodes are randomly selected from the graph to populate Q
as the starting points for the search process. These nodes
are prioritized within Q according to their categories, with
descending priority assigned to materials, operators, vehicles,
and locations, thereby ensuring an orderly and efficient traver-
sal process. During the entire search process, redundant visits
are prevented through the maintenance of a visited set Λ.
If no node fulfills the specified description C, the algorithm
terminates and returns None, indicating the absence of a
suitable match. Conversely, upon successful identification of
v∗, the connectivity analysis algorithm is subsequently invoked
to perform resource tracing.
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(a) CPI gateway

(b) Fan blades to 
be transported

(c) Operator performing 
a task

(d) Vehicle with 
BLE Tag

The onsite scenes

Fig. 5. Production environment of a workshop in the company.

In the connectivity analysis algorithm, as described in
Algorithm 2, the interaction history F of the target node v∗

is systematically reconstructed using a recursive procedure,
TRACING. To optimize computational efficiency, visited edges
set Ξ is maintained as a global variable, effectively preventing
redundant exploration. The TRACING procedure processes the
next unvisited edge with the earliest timestamp from the
pending edge list Ω, which ensures that edges are examined
in chronological order, thereby preserving temporal accuracy
and coherence in the reconstructed interaction history. After
visiting all edges in Ω, the Algorithm 2 will use the powerful
text generation capability of LLM to output a comprehensive
interaction report for logistics coordinators, enabling a deeper
understanding of the resource flow and facilitating the identi-
fication of potential causes of delays.

VI. EXPERIMENT AND EVALUATION

To validate and assess the effectiveness of the proposed
ChatSync, a series of experiments are conducted in this
section. First, the experimental dataset and model training
details are presented. Furthermore, a comparative analysis is
conducted to demonstrate the superiority of ChatSync over
benchmark approaches across various aspects of the PL work-
flow.

A. Setup of experiments

1) Data Collection: A case study was conducted on an air
conditioning manufacturer located in the Greater Bay Area
of China. The manufacturer’s PL system is characterized
by frequent resource allocation and transportation activities.
Given the dynamic nature of decision-making and operational
complexity, we deployed IIoT devices to collect the necessary

data, as shown in Fig. 5. To collect real-time position data
and resource interaction information, the CPI gateways were
installed on the wall, which receives signals from IIoT devices
distributed within the workstation, as shown in Fig. 5(a).
Before transporting materials, such as the fan blades shown in
Fig. 5(b), to their designated locations, operators must identify
and operate the specific vehicle assigned by the system, as
illustrated in Fig. 5(c). Each vehicle is equipped with a
BLE tag to facilitate tracking and ensure efficient resource
allocation and timely delivery, as shown in Fig. 5(d).

We collected two types of data in this company, namely
production and knowledge data. Production data is primar-
ily designed to train the spatial-temporal reasoning model
of ChatSync, which generates resource allocation plans to
synchronize the PL operations. To construct a high-quality
training dataset, we collected resource requirements and po-
sitional coordinates data for one month. Besides, a team of
logistics experts was invited to analyze the data and formulate
optimal decisions, which were used as ground truth during
model training. The resulting dataset contains approximately
50,000 decision records, encompassing resource allocation,
vehicle matching, and operator assignment tasks, involving
roughly 3,400 materials, vehicles, and operators. Knowledge
data is utilized to train the contextual reasoning model, which
enables the generation of operational guidance and suggestions
for the operator during the execution of the PL tasks. As
detailed in Section IV-B, ChatSync requires general, pro-
fessional, and expert knowledge. General knowledge data is
employed to enhance the basic semantic analysis capabilities
of LLM. To minimize the time required for fine-tuning, we
utilized a pre-trained open-source LLM as the foundational
model. Professional knowledge was sourced from operation
standards established by relevant national departments, as
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well as company-specific procedural documents. Furthermore,
expert knowledge was gathered through targeted interviews
with experienced and senior operators, focusing on best prac-
tices for handling various components during transportation.
After the transcribing and information process, knowledge data
amounted to approximately 2,000 pages of structured data.

2) Parameters Settings: All computational experiments were
conducted on a server equipped with an NVIDIA GeForce
RTX 4090D GPU with 24 GB of memory, an Intel Xeon(R)
Gold 6430 CPU with 32 cores, running Ubuntu 20.04, Python
3.8.10, and PyTorch 2.0.1 to implement the proposed model.
For the production dataset, 70% of the data were used for
training, 15% for validation, and the remaining 15% for
testing. For the knowledge dataset, all documents were utilized
for training. Following analysis of the relevant documents by
human experts, approximately 50 true/false questions and 30
fill-in-the-blank questions were generated for logical judg-
ment, in addition to 20 question-and-answer items designed
for generative response testing.

In the reasoning engine of the proposed ChatSync model,
the number of graph attention layers was set to 2, with a multi-
head attention module using 4 heads per layer. The number
of neighbors to sample was set to 10. Dropout was applied
with a probability of 0.1. The Adam optimizer was employed
with a learning rate of 0.0001, and the batch size was set
to 200. DeepSeek V2 [55], a pre-trained open-source LLM
in the general domain, was selected as the base model for
text analysis. The node and time embeddings were set to a
dimensionality of 100, while the memory module embeddings
were set to 172. Each experiment was repeated five times.
Parameters for the other baseline models were derived from
their respective original proposals.

B. Phase 1: performance of resource allocation

1) Baselines: To verify the superiority of the proposed
ChatSync with spatial-temporal reasoning, we compare it with
several state-of-the-art resource allocation methods as follows:

• Jodie [56]: This framework is designed for resource
allocation decisions by analyzing sequential interaction
events. It employs the recurrent neural network (RNN) to
capture the dynamic nature of graph structures and model
their temporal evolution, facilitating resource distribution
to the most relevant node pairs.

• DyRep [57]: This method focuses on learning node rep-
resentations and computing node similarity for resource
recommendation. It dynamically updates node embed-
dings based on historical interactions and edge types,
making it well-suited for multi-relational graphs where
nodes engage in diverse types of interactions.

• TGAT [58]: This approach utilizes the graph attention
mechanism to aggregate feature information from neigh-
boring nodes, adjusting attention weights based on past
events. It generates real-time resource recommendations
by evaluating the similarity between nodes’ interaction
histories.

• TGN [59]: This memory-based framework for deep learn-
ing on dynamic graphs models both past and current

node interactions through a memory module. It prioritizes
temporal factors, enabling the allocation of resources
to nodes whose past interactions are most indicative of
future resource needs.

The summary of the main differences between various
methods is shown in Table I.

2) Metrics: To evaluate the model’s performance at the task
level and the system level, the following metrics are used:

• Accuracy: This metric represents the proportion of cor-
rect decisions made by the model. It is computed by
dividing the number of allocation records that align with
expert decisions by the total number of records within
each task category.

• Punctuality rate: This metric assesses the timeliness
of material deliveries, reflecting the sequential decision-
making performance at the system level, which is needed
to consider allocating resources, vehicles, and operators
comprehensively. It is the ratio of resources delivered be-
fore the anticipated delivery deadline to the total number
of resources transported.

3) Analysis of Training Loss: Fig. 6 presents the training
loss trajectories for the proposed ChatSync alongside base-
line models, with the shaded areas representing the standard
deviation. The results demonstrate that our method achieves
rapid convergence and sustains the lowest loss throughout the
training process. While TGN exhibits pronounced fluctuations
during the initial training stages, it ultimately stabilizes at a
low loss value. Conversely, TGAT shows a clear advantage
during the early epochs but converges to a performance level
comparable to DyRep and Jodie in the later stages.

Fig. 6. Comparison of the training loss.

4) Approach Efficiency Study: Table II presents the aver-
age task-level accuracy of different approaches. This metric
reflects how precisely each model performs in various task
types: assigning appropriate resources based on production
needs in resource allocation tasks, selecting suitable vehicles
according to constraints such as capacity and availability in
vehicle matching tasks, and deploying personnel effectively in
operator assignment tasks.
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TABLE I
COMPARATIVE ANALYSIS OF METHODS FOR RESOURCE ALLOCATION AND RECOMMENDATION

Method Temporal
Reasoning
Capability

Spatial
Reasoning
Capability

Strengths Weaknesses

ChatSync ★★★ ★★★ Integrates graph convolutional layers with mem-
ory modules to capture complex spatial-temporal
dependencies, excelling in dynamic resource al-
location and continuously evolving recommen-
dation scenarios.

More computational complexity and memory
requirements, potentially limiting scalability and
real-time responsiveness on large graphs.

TGN ★★★ ★★✩ Uses temporal graph networks with memory
to model evolving interactions over time, well
suited for sequence-based recommendation.

Spatial reasoning is limited; may underperform
when fine-grained spatial relationships are cru-
cial.

TGAT ★★✩ ★★✩ Employs self-attention over edges to highlight
key events in long sequences, improving predic-
tion accuracy in time-sensitive recommendation
tasks.

Lacks deep spatial integration, reducing effec-
tiveness in spatially heterogeneous resource al-
location.

DyRep ★★✩ ★✩✩ Designed for dynamic graphs to model the
evolution of node relationships and interaction
intensities over time.

Quite limited spatial modeling capability, which
limits its applicability when spatial context in-
fluences allocation decisions.

Jodie ★✩✩ ✩✩✩ Focuses on continuous-time modeling, beneficial
for next-interaction forecasting.

No spatial component; unsuitable for scenarios
where location or network structure matters.

TABLE II
TASK ACCURACY (%) ON DIFFERENT METHODS

Method Resource allocation Vehicle matching Operator assignment
Jodie 77.28 ± 0.89 67.14 ± 0.31 79.63 ± 0.37

DyRep 86.32 ± 1.35 88.33 ± 1.52 90.48 ± 1.39
TGAT 87.88 ± 0.69 90.42 ± 0.44 89.77 ± 0.44
TGN 93.90 ± 0.57 96.32 ± 0.25 94.47 ± 0.28

ChatSync 96.19 ± 0.14 96.34 ± 0.38 95.71 ± 0.33

Fig. 7 illustrates the system-level punctuality rate. In a
standardized PL workflow, the production planner must first
allocate materials according to resource requirements, then
assign operators to specific vehicles to transport the materials
to their destinations. As a result, any sub-optimal decision in
any of the task categories within the same order can cause
delays in final material delivery. Consequently, the system-
level punctuality rate is consistently lower than the corre-
sponding task-level accuracy across all methods. Additional
observations based on the experimental results are summarized
as follows:

1) ChatSync demonstrates the best performance across all
categories tasks, maintaining an accuracy of around
96%. Although system-level performance is more chal-
lenging due to task interdependencies, ChatSync still
achieves a delivery punctuality rate of 91.24%. This
can be attributed to the effective integration of GCN
and node memory mechanism. The graph convolutional
layer captures spatial dependencies by aggregating in-
formation from neighboring nodes, while the memory
mechanism incorporates past allocation trends to predict
future resource requirments in an implicit way. This dual
module enables the model to comprehensively account
for both temporal and spatial dynamics, making it highly
effective in handling complex allocation tasks.

2) TGN demonstrates strong and consistent performance
across all tasks, with approximately 95% task-level
accuracy and 88% system-level punctuality. Although

it can achieve similar accuracy in individual task, it lags
behind our method by about three percentage points
in punctuality rate. This is due to the model’s only
focus on learning temporal patterns, ignoring extracting
feature from embeddings with spatial-temporal informa-
tion, which limit its ability to handle sequential decision
problem.

3) TGAT performs not well in Resource Allocation is
not as strong as other models. This is because TGAT
focuses heavily on temporal dependencies but does not
fully incorporate spatial relationships. In PL, the spatial
allocation of resources is as important as their temporal
scheduling, and the lack of spatial reasoning in TGAT
leads to its lower accuracy in tasks that require careful
allocation of resources across the production network.

4) DyRep exhibits competitive performance in operator
assignment and vehicle matching, but it struggles with
spatial allocation because it lacks a mechanism for
efficiently incorporating past allocation patterns, which
can lead to suboptimal decisions.

5) Jodie consistently shows the lowest accuracy across all
tasks. Although RNN are typically adept at handling
temporal dependencies, but they lack effective memory
forgetting mechanisms, leading to struggle with large
and complex graph network.
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Fig. 7. Punctuality rate for different methods.

C. Phase 2: performance of suggestion generation

1) Baselines and Metrics: In order to assess the performance
of ChatSync with contextual reasoning, we introduce the
following baseline models for comparative analysis:

• Base LLM: An advanced language model comprising
236B parameters. It has been trained from scratch on
a vast dataset of 2 trillion tokens in both English and
Chinese.

• LLM + Fine-tuning: An enhanced version of the Base
LLM, fine-tuned on a specialized dataset to improve
performance in specific domains or tasks.

• LLM + Vector Search: Integrates the LLM with vector
search capabilities, allowing for efficient retrieval of
semantically similar texts by matching embeddings, thus
improving contextual relevance in text generation.

To assess the performance of the models, we use a set of
evaluation metrics that quantify both the accuracy and the
quality of the generated response:

• Accuracy: This is a metric used in cognitive inference
to evaluate the logical performance of the LLM. It is
calculated by dividing the number of correct answers
by the total number of questions, reflecting the model’s
understanding within a specific domain.

• ROUGE-1/2/L: They are metrics used to evaluate the
quality of generated text by comparing n-gram overlap
and sequence similarity between the model output and
reference texts in suggestion generation. ROUGE-1 mea-
sures the overlap of unigrams, while ROUGE-2 evaluates
bigram overlap. ROUGE-L focuses on the longest com-
mon subsequence between the texts, assessing the fluency
and coherence of the generated output [60].

2) Model Performance Analysis: Table III presents the
performance of different models on the knowledge dataset.
In the cognitive inference category, which includes true/false
and fill-in-the-blank questions, the accuracy rate is determined
by the proportion of correctly answered questions. The base

LLM exhibited the lowest accuracy and the primary reason
lies in its training on general datasets, which lack relevant
knowledge in specific domains, leading to suboptimal perfor-
mance. In contrast, the other three approaches are trained using
professional and expert knowledge, resulting in improved ac-
curacy. The ChatSync with contextual reasoning achieves the
highest accuracy by leveraging a knowledge graph to model
relevant information, making it easier to extract meaningful
insights through multi-hop search. In comparison, fine-tuning
and vector search primarily rely on textual similarity for
answer matching, which lacks an effective thinking process
for complex problems.

In suggestion generation, which includes question-and-
answer tasks, all models use expert-provided responses as
ground truth to calculate ROUGE-1/2/L scores. Higher values
of these metrics indicate closer alignment between the model’s
output and the expert-generated text. ChatSync equipped with
contextual reasoning achieves the best performance across
all metrics. It can also be found that the ROUGE-L score
often falls between ROUGE-1 and ROUGE-2. This is because
ROUGE-1 only considers the matching of individual words
between the generated answers and the ground truth, while
ROUGE-2 evaluates the overlap of consecutive word pairs,
resulting in scores typically lower than ROUGE-1. On the
other hand, ROUGE-L incorporates sentence-level matching
by combining word overlap and sequence alignment, capturing
more extended matching patterns. Consequently, the ROUGE-
L score usually falls between the ROUGE-1 and ROUGE-2
scores.

3) Text Generation Analysis: Taking the XA-7 series cooling
fan blades produced by the company as an example, Table IV
presents the handling suggestion generated by each LLM for
this product. The table includes the answers of various models
and expert comments on those responses. The base LLM, lack-
ing training in specialized domains, can only provide general
suggestions and fails to give precise answers tailored to this
product, so it is not shown in the table. The responses based on
fine-tuning techniques are notably lengthy and not optimized
for guiding frontline workers. Additionally, fine-tuning faces
challenges with knowledge updates. If the operation guidance
changes due to technological advancements in the company’s
products, the knowledge embedded in the LLM becomes
outdated. In this case, Updating the knowledge base of LLM
requires retraining or incremental learning, both of which
increase training costs and may lead to catastrophic forgetting.
LLM that integrate vector search and contextual reasoning
are more suitable for long-term knowledge base maintenance
as they improve the knowledge retrieval process rather than
embed knowledge directly into the model’s parameters, as fine-
tuning does. However, vector search primarily matches based
on textual similarity without analyzing relationships between
text objects. As a result, the generated text may be excessively
verbose and fail to deliver concise information.

4) Effect of Personalized Generation: In addition to pro-
viding more precise operational guidance, ChatSync incor-
porates dynamic prompts to support personalized suggestions
regarding various scenarios. Table V displays the responses to
various prompts, with bold text indicating the parts that change
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TABLE III
PERFORMANCE IN TEXT ANALYSIS AND SUGGESTION GENERATION

Method
Cognitive Inference Suggestion Generation

Accuracy (%) ROUGE-1 ROUGE-2 ROUGE-L

Base LLM 76.05 0.1674 0.0586 0.1091
LLM + Fine-tuning 81.69 0.2382 0.0925 0.1509

LLM + Vector Search 84.51 0.2706 0.1004 0.1773
ChatSync 90.14 0.3597 0.1276 0.2350

based on the operator’s real-time work situation. For example,
when operators are handling materials for the first time,
ChatSync will use an apprentice prompt to provide detailed
but concise guidance. In contrast, the master prompt is used
to reduce the volume of information for operators who have
transported the same material multiple times, retaining only
key steps to minimize redundancy and reduce worker fatigue.
Similarly, the misoperation prompt and deviation prompt are
designed to address specific past errors, such as operating
an unauthorized vehicle or delivering materials to the wrong
destination, by providing targeted reminders to prevent recur-
rence. In summary, the use of dynamic prompts in ChatSync
enables the system to adapt operational guidance to operators’
individual needs and past behaviours, enhancing efficiency
while minimizing errors in diverse working environments.

D. Phase 3: performance of resource traceability
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Fig. 8. Running time for different methods.

1) Baselines and Metrics: In resource traceability, Chat-
Sync leverages relational reasoning to achieve rapid resource
identification, providing logistics coordinators with a complete
and clear overview of resource flow. To evaluate the search
performance of ChatSync within RSTG, we compared it with
two classic graph search algorithms:

• Breadth-First Search (BFS) [61]: This approach can
systematically explore all nodes at the current depth level
before progressing to nodes at the next depth level. BFS

utilizes a queue data structure to manage and track ver-
tices pending exploration, making it particularly effective
for a layer-by-layer traversal of the graph.

• Depth-First Search (DFS) [62]: This algorithm delves as
deeply as possible along each branch of the graph before
backtracking to explore alternative paths. It is especially
advantageous for tracing resource dependencies within
hierarchical structures or long chains, enabling uninter-
rupted exploration of a resource path from its origin to
its termination.

2) Result: The time required by different algorithms to trace
the same resource is presented in Figure 8. Our proposed
method, ChatSync with relational reasoning, achieves the
shortest average time, approximately 23.8 seconds, compared
to 46.3 seconds and 56.4 seconds for the other two algorithms.
From the boxplots, it can be observed that the standard
deviations of BFS and our method are nearly identical, indi-
cating relatively stable performance. In contrast, DFS exhibits
significant variability, as evidenced by the larger interquartile
range. This variability stems from the depth-first nature of
DFS, which prioritizes exploring an entire branch of the graph
before backtracking to search other directions. If the target
node is not within the current branch, the algorithm still re-
quires exhaustively exploring all nodes in that branch, making
its search time heavily dependent on the choice of branch
and resulting in more significant fluctuations. BFS, on the
other hand, employs a layered search strategy, avoiding deep
traversal into irrelevant branches. This leads to a reduction
in time consumption compared to DFS. ChatSync, with rela-
tional reasoning, further optimizes the process by prioritizing
branches based on the relationships between nodes, actively
targeting branches with a higher likelihood of containing the
desired resource. Consequently, it achieves the lowest time
consumption among all algorithms.

E. Managerial implications

Based on the experimental analyses, we derive the following
managerial implications for optimizing PL workflow:

The chat-based interface is particularly effective for front-
line workers, as it removes the need for specialized com-
puter skills. This allows workers to access necessary task
information and resource availability with ease, significantly
reducing cognitive load and improving overall task execution.
By simplifying interactions and focusing on the essentials,
workers are able to perform their duties more efficiently
without the burden of complex systems or technical training.
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TABLE IV
SUGGESTIONS GENERATED BY DIFFERENT METHODS

Method Handling Suggestion Expert Comments
LLM +
Fine-
tuning

1. Selection and Installation of Cushion Pads
Objective: To provide adequate protection to fan blades during handling and transport by ensuring proper
cushioning.
Procedure:

• Material Selection: Use T-300 cushion pads exclusively.
• Coverage: Ensure full coverage of contact surfaces.
• Installation: Place pads on contact points and secure them within support brackets.
• Vibration and Friction Prevention: Double-check securement to prevent vibrations or friction.

2. Securing and Stabilizing Fan Blades
Objective: To ensure fan blades remain stable and secure within the protective frame during transport.
Procedure:

• Fixing Within Protective Frame: Position blades correctly within the frame.
• Use of Rubber Straps: Utilize rubber straps to tie down blades securely.
• Stability Check: Perform a stability check by gently shaking the frame.

3. Spacing and Use of Protective Dividers
Objective: To prevent overlap or direct contact between fan blades, especially for fragile models.
Procedure:

• Spacing Requirement: Maintain a minimum spacing of 10 cm between each set of fan blades.
• Insertion of Protective Dividers: Insert dividers between blades made of impact-absorbing materials.
• Special Considerations for Fragile Models: Use additional protective layers or robust materials for fragile

blades.
4. Inspection and Confirmation
Objective: To verify that all securing and cushioning measures are in place before proceeding with transport.
Procedure:

• Post-Loading Inspection: Conduct a thorough inspection after loading the blades.
• Post-Unloading Inspection: Perform another inspection upon unloading.
• Confirmation: Inspect document results and correct any actions taken. (227 words)

From a content perspec-
tive, this is a typical
GPT-style answer. It in-
cludes some informa-
tion that is irrelevant for
the operational phase,
such as the “Objective.”
While this detailed re-
sponse is suitable for
new employee training,
it adds unnecessary in-
formation overload for
employees who han-
dle numerous transport
tasks daily.

LLM +
Vector
Search

1. Selection and Installation of Cushion Pad
• Use T-300 cushion pads exclusively, as they are designed to absorb shock and reduce friction.
• Ensure full coverage of the fan blades’ contact surfaces, including leading and trailing edges, tips, and

bases.
• Place cushion pads directly on contact points where the blades will rest.
• Double-check pad security to prevent vibrations.

2. Securing and Stabilizing Fan Blades
• Position each blade within its dedicated protective frame that matches its dimensions and weight.
• Use rubber straps in a crisscross pattern to secure the blades within the frame, ensuring no movement

during transport.
• Perform a stability check by gently shaking the frame to confirm that the blades do not move or detach.

3. Spacing and Use of Protective Dividers
• Maintain a minimum spacing of 10 cm between each set of fan blades to prevent overlap or direct contact.
• Insert protective dividers made from impact-absorbing materials like foam or rubber between each set of

blades.
• Use additional protective layers or robust materials for fragile blades.

4. Inspection and Confirmation
• Conduct post-loading inspections to verify securing measures before transport.
• Check for movement, and re-tighten straps or adjust blade positioning if detected.
• Upon unloading, inspect again for any signs of movement or damage during transport. (205 words)

The answer includes the
necessary operational
steps but is somewhat
too detailed and
lengthy. In practice,
operators receive tasks
and related suggestions
via their mobile phones,
so recommendations
should not be too long,
as they may not fit on
a single screen.

Chat-
Sync

1. Selection and Installation of Cushion Pads
• Use T-300 cushion pads exclusively.
• Ensure pads fully cover blade contact surfaces.
• Place pads directly on contact points and secure them with fasteners.
• Double-check pad security to prevent vibrations.

2. Securing and Stabilizing Fan Blades
• Position blades correctly in protective frames.
• Use rubber straps in a crisscross pattern to secure blades.
• Perform a stability check by gently shaking the frame.

3. Spacing and Use of Protective Dividers
• Maintain 10 cm spacing between blades.
• Insert protective dividers (foam or rubber) between blades.
• For fragile models, use additional protective layers.

4. Inspection and Confirmation
• Conduct thorough inspections post-loading and post-unloading.
• Check cushion pads, straps, and dividers.
• Inspect documents and correct actions. (116 words)

This response has
significantly reduced
word count compared
to other versions, and
each step is concise,
enabling operators to
quickly grasp the key
points. By eliminating
unnecessary details, it
enhances clarity and
makes it easier for
operators to follow,
leading to more
efficient execution of
tasks.
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TABLE V
RESULT OF PERSONALIZED SUGGESTION GENERATION

Method Response
ChatSync with

Apprentice
Prompt

Your task is to operate forklift CK953 to transport 10 sets of XA-7 fan blades from Shelf 8 in Zone A to Shelf
4 in Zone C. The forklift is located in Zone B near the entrance. Once in Zone C, place the fan blades in the
designated area, ensuring they are properly aligned and organized according to the layout of the zone.

Before transporting the cooling fan blades, follow these handling guidelines:
1. Selection and Installation of Cushion Pads

• Use T-300 cushion pads exclusively.
• Ensure pads fully cover blade contact surfaces.
• Place pads directly on contact points and secure them with fasteners.
• Double-check pad security to prevent vibrations.

2. Securing and Stabilizing Fan Blades
• Position blades correctly in protective frames.
• Use rubber straps in a crisscross pattern to secure blades.
• Perform a stability check by gently shaking the frame.

3. Spacing and Use of Protective Dividers
• Maintain 10 cm spacing between blades.
• Insert protective dividers (foam or rubber) between blades.
• For fragile models, use additional protective layers.

4. Inspection and Confirmation
• Conduct thorough inspections post-loading and post-unloading.
• Check cushion pads, straps, and dividers.
• Inspect documents and correct actions.

ChatSync with
Master Prompt

Your task is to operate forklift CK953 to transport 10 sets of XA-7 fan blades from Shelf 8 in Zone A to Shelf
4 in Zone C. The forklift is located in Zone B near the entrance. Once in Zone C, place the fan blades in the
designated area, ensuring they are properly aligned and organized according to the layout of the zone.

Before transporting the cooling fan blades, follow these handling guidelines:
• Use T-300 pads exclusively. Ensure full coverage on contact surfaces and secure firmly in brackets

to prevent movement.
• Position blades correctly in protective frames and secure with crisscross rubber straps, ensuring

no movement.
• Maintain 10 cm between blades and use impact-absorbing dividers. For fragile models, consider

additional layers.
• Post-loading and post-unloading, verify all securing measures are intact. Document any issues and

corrective actions.

ChatSync with
Misoperation

Prompt

Your task is to operate forklift CK953 to transport 10 sets of XA-7 fan blades from Shelf 8 in Zone A to Shelf
4 in Zone C. The forklift is located in Zone B near the entrance. Once in Zone C, place the fan blades in the
designated area, ensuring they are properly aligned and organized according to the layout of the zone.

It seems that the system has noticed you’ve driven the wrong vehicle a few times recently. Remember,
for this task, you should be using forklift CK953. To avoid any mix-ups in the future, please take a
moment to double-check the vehicle ID before you start driving. This will help ensure you’re using the
correct equipment for the job.

Before transporting the cooling fan blades, follow these handling guidelines: ... ...
ChatSync with

Deviation
Prompt

Your task is to operate forklift CK953 to transport 10 sets of XA-7 fan blades from Shelf 8 in Zone A to Shelf
4 in Zone C. The forklift is located in Zone B near the entrance. Once in Zone C, place the fan blades in the
designated area, ensuring they are properly aligned and organized according to the layout of the zone.

The system has detected that you have gone to the wrong destination in the past, which resulted in a
delivery delay. Please confirm again that the destination of this task is Zone C. Please do not make any
mistakes again.

Before transporting the cooling fan blades, follow these handling guidelines: ... ...

When allocating resources, considering the spatial and tem-
poral relationships between different elements is crucial for
optimizing operational efficiency. By leveraging real-time data,
systems can ensure that workers, vehicles, and materials are
deployed at the right time and location, preventing delays and
improving overall workflow. Understanding these relationships
allows for more dynamic decision-making, helping to avoid
resource shortages or unnecessary idle time, which ultimately
boosts productivity.

Conducting standardized checks before workers begin any
task is essential to ensure both accuracy and consistency.
However, the complexity of managing diverse materials in

large-scale operations can make it challenging to consult
reference materials or manuals constantly. To overcome this,
offering context-specific suggestions tailored to the worker’s
past performance can streamline the process. By analyzing
historical data, systems can provide personalized guidance,
helping workers complete tasks more efficiently while reduc-
ing the risk of errors and minimizing product loss.

VII. CONCLUSION

This paper presents the ChatSync framework, designed to
improve work efficiency through interactive communication
with the system. The novelty of this work is threefold. First,
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the proposed RSTG integrates information and knowledge
domains, facilitating knowledge fusion for advanced anal-
ysis. Second, we propose spatial-temporal, contextual, and
relational reasoning mechanisms to enhance decision-making
in allocation recommendation, suggestion generation, and re-
source traceability. Third, ChatSync optimizes workflow in
the PL chain by allowing various roles to access critical
information via chat. It also provides personalized guidance
for frontline workers, reducing cognitive load.

Despite the promising results, this work has several limita-
tions. First, as the transfer records accumulate, the RSTG will
gradually become a dense graph, which could complicate the
process of identifying key information from an increasingly
large set of adjacent nodes. Second, when the knowledge
within the RSTG needs updating, such as when advancements
in the fan manufacturing process lead to changes in the latest
transportation standards, removing outdated knowledge nodes
and establishing new connections can be a time-consuming
task. This challenge of dynamic knowledge management in
ChatSync could affect the system’s overall responsiveness and
efficiency in immediate or live scenarios.

Future research will focus on improving the scalability and
adaptability of the RSTG within ChatSync to overcome these
limitations. One key direction will be designing more efficient
algorithms for extracting and prioritizing critical information
from a dense graph, using sampling techniques or hierarchical
graph structures to simplify the identification of relevant
nodes. Additionally, methods for faster and more automated
knowledge updates will be explored, such as creating indexes
for each node in the knowledge domain to enable rapid
identification of all affected nodes when the RSTG is updated.
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