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A B S T R A C T   

Personalized products have gradually become the main business model and core competencies of many enter-
prises. Large differences in components and short delivery cycles of such products, however, require industrial 
robots in cloud manufacturing (CMfg) to be smarter, more responsive and more flexible. This means that the 
deep learning models (DLMs) for smart robots should have the performance of real-time response, optimization, 
adaptability, dynamism, and multimodal data fusion. To satisfy these typical demands, a cloud-edge-device 
collaboration framework of CMfg is first proposed to support smart collaborative decision-making for smart 
robots. Meanwhile, in this context, different deployment and update mechanisms of DLMs for smart robots are 
analyzed in detail, aiming to support rapid response and high-performance decision-making by considering the 
factors of data sources, data processing location, offline/online learning, data sharing and the life cycle of DLMs. 
In addition, related key technologies are presented to provide references for technical research directions in this 
field.   

1. Introduction 

Mass Personalized Products (MPPs), adapted to meet individual 
customers’ requirements and needs, have gradually become one main 
business model, as well as the core competitiveness of enterprises to 
stabilize and expand the market. It requires product fulfillment (where 
industrial robots play a key role) to be changeable, adaptable, and 
configurable, because not only the final product but also the basic design 
and product structure must be able to differentiate at the module and 
parameter level to meet individual’s unique needs. As shown in Fig. 1, 
Mass Products (MPs) focus on the large-scale production of common and 
standardized products for the vast majority, while Mass Customization 
Products (MCPs) and MPPs form the so-called "long-tail", because they 
deal with the small batch production or the production of a personalized 
product. Driven by technology development and market requirements, 
MPPs can also produce substantial economic benefits when the tech-
nology is mature and the operation cost is low enough. Therefore, 
personalized products can fulfill customer needs for individual prefer-
ences and uniqueness, resulting in increased revenue from boosting 

overall sales to enhancing the average order value. 
Cloud manufacturing (CMfg), which virtualizes and manages mass 

manufacturing resources and capabilities and provides them as 
manufacturing services, is a promising manufacturing mode [1–3]. 
However, personalized products have the characteristics of order-driven 
production, strict processing times, high dynamic external conditions, 
and considerable flexibility in the production process. These bring more 
uncertainties to the production system (composed of industrial robots) 
and significant challenges in the adaptive processing of related tasks for 
robots in mass personalized production. Large differences in compo-
nents and processes of MPPs require that robots in CMfg can intelligently 
deal with individual MPPs parts, make timely adaptive decisions, and 
perform dynamic reconfiguration [4] to manufacture efficiently mass 
personalized products. For this reason, smart robots in CMfg need to 
have the self-X (aware, optimizing, and learning) ability to learn new 
methods, knowledge, and skills from their experience, collaborate with 
human workers, make smart decisions [5], and face complex and dy-
namic situations of MPPs. 

By adopting a large number of hidden layers (mostly non-linear) and 
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combining automatic feature engineering with the learning process, 
deep learning (DL) has a strong ability to learn the essential character-
istics of the data from samples, thereby achieving outstanding perfor-
mance. With the help of DL, robots endowed with self-X (aware, 
optimizing, and learning) ability become smarter. However, since DL 
often requires high-performance computing resources (GPUs, CPUs and 
storage devices) for model training and execution on massive data, 
exiting robots for manufacturing may not fulfill this stringent require-
ment on computing capability. Meanwhile, there is an imprecise trend: 
the more layers and parameters of a deep neural network, the more 
accurate the decision-making, which would undoubtedly increase the 
training and running cost of deep learning models (DLMs). A common 
practice is to outsource (or upload) the shopfloor manufacturing data to 
the cloud computing center, that can afford computing-intensive tasks, 
and send the decision result to the smart robots. As a result, with the 
deployment of a large number of robots and other sensor devices in 
smart factories, the volume of real-time data generated can reach PB or 
even ZB level [6] while transferring raw manufacturing data to remote 
clouds, which inevitably leads to high latency, data loss, and network 
congestion. Hence, this common cloud computing practice may fail to 
fulfill the real-time requirement of time-sensitive tasks for smart robots. 

As a supplement to cloud computing, edge computing can provide 
timely computing services because of its proximity to manufacturing 
resources (data sources) [7]. However, its limited computing resources 
make it difficult to support large DLMs that have complex structures and 
a large number of parameters. This means that learning from a large 
amount of historical data still needs to be completed in the cloud center. 
Moreover, MPPs require precise and timely control of the movements of 
the end equipment. Therefore, it is necessary to migrate (part of) in-
telligence from the cloud center to edge and end devices (mainly in-
dustrial robots) to meet the requirements of MPPs scenarios for smart 
real-time response through cloud-edge-device collaboration. To make 
CMfg better cope with the impact of mass personalization, internal and 
external uncertainties, and high dynamic factors, it is essential to 
conduct research on the deep integration of cloud-edge-device collab-
oration with CMfg for smart robots. 

2. Mass personalized production and deep learning 

2.1. Characteristics of mass personalized production 

Personalized products that can be manufactured by additive 
manufacturing are not the focus of this article. Instead, this paper dis-
cusses a new discrete manufacturing paradigm: personalized product 

realization tailored to the individual needs and preferences of con-
sumers. A typical example is a personalized vehicle interior to match the 
specific needs of an individual. 

With the help of pervasive connections, MPPs require customer 
engagement in product design and manufacturing processes, or even in 
the entire life cycle of the product. To produce MPPs with a wide variety 
and small batches in a short cycle, an open product platform is utilized to 
allow various modules, including user-designed modules, to be inte-
grated. Usually, an MPP consists of three types of modules [8]: common 
modules that are shared across the product platform, customized mod-
ules that allow customers to choose, mix and match, and personalized 
modules that allow customers to create and design. The standard me-
chanical, electrical and informational interfaces of these modules allow 
easy assembly and disassembly. 

To manufacture MPPs, production resources, cloud platforms, edge 
servers, and upper monitoring terminals should be closely connected. To 
support efficient manufacturing of MPPs, the CMfg system should have 
the ability of dynamic and rapid reconfiguration for different product 
variants. To make smart decisions and control the system (including 
system reconfiguration) for MPPs, it is necessary to have the real-time 
pervasive monitoring of manufacturing resources and smart data pro-
cessing ability. 

2.2. DL-enabled smart robots for mass personalized production 

(1) Real-time smart decision-making for machine-to-machine 
collaboration 

As shown in Fig. 2, the MPPs require the CMfg system to (1) intel-
ligently identify different personalized products/components, perceive 
their different shapes, sizes, materials and orientation, and perform 
necessary system reconfiguration to achieve fast and flexible loading, 
unloading, clamping, etc.; (2) according to individual order re-
quirements, accurately locate and dynamically organize production re-
sources to achieve on-demand processing through the interaction and 
collaboration between manufacturing resources (equipment/products/ 
workpieces). The realization of the above requirements largely depends 
on the application of DL in smart robots. For example, CNN is used to 
realize the identification and quality inspection of workpieces, and 
LSTM is used to realize short-term AGV flow prediction in the workshop 
[9]. Moreover, DL methods are adopted to identify machine faults and 
predict the remaining useful life (RUL) of such machinery as induction 
motors, gearboxes, and bearings [10,11]. 

(2) Human-centered collaboration paradigm 
The concept of Industry 5.0 puts more emphasis on human-centered 

Fig. 1. The long tail production module.  
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production and increases workers’ job satisfaction and safety. Against 
this backdrop, in the process of mass personalized production, the effi-
cient, intelligent and safe collaboration between humans and robots 
[12] can be realized through the interactive fusion of multimodal data, 
which interconnects and combines the strengths of humans and those of 
robots. In this area, DL has achieved relatively successful applications. 
For example, based on DL, it is now possible to realize the recognition of 
employee fatigue/unsafe operations, motion trajectory prediction, 
speech recognition, gesture recognition, emotion recognition, etc. 

(3) Dynamic resource scheduling 
MPPs are characterized by multi-variety, small-batch, and short- 

cycle production. These features of MPPs require the job-shop sched-
uling system to be more intelligent and responsive, so applying DL to 
production performance prediction and workshop resource scheduling 
can effectively increase the usefulness of scheduling to efficiently opti-
mize resource management and usage for individual production needs 
and dynamic environments. In addition, the scheduling of computing 
and communication resource that supports intelligent decision-making 
and collaboration between manufacturing resources requires and uses 
DL to meet the requirements of deterministic routing, the right data 
arrival sequence and reliable computating. An example of this is the 
realization of short-term data traffic prediction and network resource 
allocation for AGVs based on DL. 

2.3. Challenges of smart robots in mass personalization for deep learning 

The development of MPPs calls for in-depth application of DL in 
smart industrial robots and puts forward higher requirements for DL’s 
performance on the real-time response, optimization, adaptability, 
dynamism, multimodal data fusion and reliability. 

(1) Real-time response: One major challenge of applying DL to in-
dustrial robots for MPPs comes from the uncertainties and dynamical 
conditions of the system configuration and production information. As 
the products are individualized and versatile, there are circumstances in 
which the planned operation has to be modified after the production 
process is initiated. In addition, MPPs may encounter urgent events that 
are disruptive to production, such as rush orders, machine failures, part- 
programming errors, and reconfiguration. To overcome such challenges, 
real-time decision-making capability needs to be incorporated into the 
manufacturing system [12]. This requires DL capable of making smart 
decisions quickly, usually in milliseconds. 

(2) Optimization: MPPs have higher requirements for DL applications 
on the accuracy of prediction/classification and the optimization degree 
of resource scheduling for personalized modules. For example, the 
prerequisite for an effective predictive maintenance strategy is an ac-
curate prediction of the RUL of the machine [13,14]. The results of the 
RUL prediction can guide companies to develop maintenance 
decision-making methods, implement remote maintenance to minimize 
unplanned machine downtime, and maximize service life to reduce 

maintenance costs. However, MPPs involve a wide variety of products, 
resulting in complex machine operating conditions, and the nonlinear 
decline of machine performance. Therefore, MPPs put forward higher 
accuracy requirements for DL-based predictive maintenance of 
machines. 

(3) Adaptability: DL is required to be suitable for different processing 
scenarios of MPPs. For example, to ensure rapid response to consumer 
demands, the manufacturing system should have the flexibility in 
creating personalized modules with different features and assembling 
these modules with other modules from other manufacturers. This re-
quires DL-based applications in smart industrial robots, such as parts 
recognition and quality inspection, to have adaptive learning capabil-
ities and adapt to modules of all types - common, customized, or 
personalized. 

(4) Dynamism: Facing MPPs, developing an optimal DLM is a 
considerable challenge. Note that a new DLM has to be used each time 
when the production of a new individualized product starts. Besides, 
various disrupting factors in the production workshop may occur and 
affect the practical activities of robots. These require the ability of smart 
robots to quickly and dynamically adjust and update the DLM network 
structure and parameters according to the changes in tasks. 

(5) Multimodal data fusion: Multimodal data, such as images and 
videos, comes from different industrial robots and can provide more 
comprehensive and accurate information on workshop operation status 
through mutual support, supplement, and correction. By contrast, 
human-centered collaboration requires multimodal data fusion such as 
facial expressions, speech, and body movements to fully perceive, un-
derstand, and match the behavioral characteristics and habits of 
different workers. Traditionally, the feature fusion method is used for 
multimodal data fusion. However, due to the fact that multimodal data 
is collected at different locations and their features vary in size, mean-
ing, redundancy, and importance for decision-making, how to achieve 
efficient multimodal data fusion is a key challenge for DL. 

(6) Reliability: Most robotics applications are reliability-critical, such 
as material handling and human-robot collaboration. Unfortunately, DL- 
based methods are very fragile and susceptible to adversarial examples. 
An adversarial example which comes from erroneous sensor signals, 
exceptional data, etc. would cause the generation of unexpected or even 
false results when it is fed into DLMs. Since such adversarial perturba-
tions can cause instability in DL performance, reliable training, 
deployment, and decision-making mechanisms of DLMs are essential. 
Therefore, mechanisms of reliable end-to-end communication and data 
verification should be designed to minimize the probability of data 
delay, data loss, and erroneous data for DLMs. 

Fig. 2. The case of MPPs processing.  
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3. Cloud-edge-device collaboration based cloud manufacturing 
architecture 

3.1. Overall framework 

Although the central cloud for DL can effectively guarantee DL’s 
optimization performance (by deploying and running large-scale DLMs), 
it usually suffers from latency and reliability issues because real-time 
decision-making cannot be guaranteed. Latency issues are caused by 
the bidirectional communication: between industrial robots and the 
cloud; between the cloud and actuators of locally-networked robots 
during the return of meaningful inference results from the cloud. Those 
latency issues may also lead to limited adaptability and dynamics of DL. 
The exceptional events that may occur during the bidirectional long- 
distance communication will harm the reliability of DL based 
decision-making applications in smart robotics. The long transmission 
delay of data also leads to reliability problems for time-sensitive DL 
applications for smart robotics. 

This paper designed a hierarchical and distributed CMfg platform to 
address the aforementioned challenges. Specifically, through the deep 
integration of cyber-physical systems, edge computing, and CMfg, a 
multi-level and highly flexible CMfg system with "Cloud-Edge-Device" 
collaboration ability is built to support distributed training, deployment, 
operation, and update of DLMs, that satisfy MPPs’ requirements for DL’s 
performance on real-time response, optimization, adaptability, dyna-
mism, multimodal data fusion and reliability. Then, flexible and effi-
cient manufacturing of MPPs can be realized, quickly responding to a 
complex and changing buyer’s market and meeting customers’ needs for 
customized and personalized products. As shown in Fig. 3, the CMfg 
system framework with "Cloud-Edge-Device" collaboration is divided 
into three layers: the Device layer (production resource Layer), the Edge 
layer, and the Cloud layer. 

(1) Device layer: The device layer mainly includes materials and 
smart industrial robots, such as AGVs, conveyors, robotic arms and other 
controlled platforms, which serve as “the physical layer” for the entire 
CMfg system. Different devices, machinery and equipment, such as as-
sembly, welding, painting, packaging and machining robots, are 
controlled by their corresponding automatic control systems. Smart 

robots are equipped with more powerful sensors, such as 3D cameras, 
range and range sensors, to monitor the objects and the environments. 
DL can be implemented at the device layer in small and low-power 
embedded computing devices, such as FPGAs, DSP or ARM. Therefore, 
it is crucial to meet the real-time requirement for the device layer in 
MPPs’ CMfg. 

(2) Edge layer: The edge layer is generally composed of wireless base 
stations, small data centers (edge servers), and other edge nodes [15], 
which are usually deployed in the workshop/factory and mainly provide 
edge computing, storage, and networking services in the fixed or mobile 
way. The edge nodes are placed near the devices/robots, and can pro-
vide low-latency edge computing services for robot DL applications, but 
the computing power is relatively limited. For example, an edge node 
like an AI accelerator can be mounted on the robot and integrated into 
the robot controllers using hardware interfaces, permitting a simple and 
profitable combination of AI algorithms and robot control logic. The AI 
accelerator enables the efficient processing of neural network structures 
and the use of DL algorithms, such as for vision-based applications. 
Furthermore, the interconnection of physical devices (e.g., robots, ma-
chines and conveyor belts) and edge nodes using wires or wireless net-
works is implemented to compose manufacturing subsystems. Different 
manufacturing subsystems can meet different mission requirements, 
ensuring the adaptability and dynamics of DL. 

(3) Cloud layer: In the cloud layer, a large number of servers and 
storage devices are used as the hardware base to support the mode of 
IaaS, SaaS, and PaaS, providing efficient parallel computing services, 
and large-scale data storage space for DL applications to ensure the 
optimization of DL-based decisions. The specific implementation can be 
a private cloud, developed by the large manufacturing enterprise and 
located inside its factory, or a third-party public cloud, built by the large 
IT vendor to provide cloud services for small and med-size enterprises. 
In either case, edge nodes would be placed much nearer to the robots 
(data sources) than that of the cloud. 

Overall, in our designed architecture, edge nodes placed at the 
location as close as possible to the data source (smart robots), can deliver 
strong benefits, including faster insights, improved response times and 
better bandwidth availability. As smart robots’ data is processed and 
analyzed closer to the point where the data is created, and the data does 

Fig. 3. Cloud-edge-device collaboration architecture.  
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not traverse over a network to a cloud to be processed, then latency and 
possible exceptional events (due to frequently unpredictable network 
bandwidth, latency or reliability) are significantly reduced. Meanwhile, 
the reliability of DL-based robotics applications is improved. In addition, 
reliable end-to-end communication (via multi-path transmission of 
multiple data copies) and data verification mechanism can be further 
introduced to minimize the probability of data delay, data loss, and 
erroneous data for DLMs. 

3.2. Cloud-edge-device collaboration elements 

(1) Data processing location: The data processing pipeline for DL 
generally consists of data collection, preprocessing, storage, analysis, 
and decision-making. Usually, the device layer takes the responsibility 
for data acquisition. The edge layer preprocesses the collected data to 
ease data analysis, then sends the resulting data to the cloud for storage 
and analysis, and issues decisions to control the devices. However, in the 
cloud-edge-device framework, each stage of a data processing pipeline 
may occur at the device, edge, or cloud layers, depending on the design 
of smart decision-making mechanisms. For example, the device layer 
may be responsible not only for data collection but also for data pre-
processing and simple decision-making; the edge layer may also un-
dertake the data preprocessing and real-time decision-making functions. 

(2) Offline/Online learning: The data processing and analytics for DL 
can be performed in an online or offline way. Offline training, decision- 
making and updating of large-scale DLMs using massive multi- 
dimensional and multi-source data are usually performed in the cloud 
with abundant computing and storage resources for time-insensitive 
applications. For edge nodes and smart robots near to data sources or 
shopfloor things, they are normally used to conduct online incremental 
training and updating of lightweight DLMs based on new local data for 
time-critical applications. They can also collaboratively realize online 
training, decision-making and updating of large-scale DLMs through 
joint training and collaborative approaches. 

(3) Data sharing: There are three kinds of data-sharing among the 
cloud, edges, and devices: data, information, and knowledge. Data is 
collected from IoT sensors of smart robots. Information is useful data, 
obtained through data preprocessing methods, including data cleaning, 
transformation, extraction, merging and so on. Knowledge is the oper-
ating principle or law of the system obtained via information processing. 
Data or information sharing is common, as end devices and edge nodes 
can perform data collection or preprocessing. In the cloud-edge-device 
collaboration architecture, knowledge sharing can contribute to the 
reduction of data transmission, e.g., extracted features and DLM pa-
rameters can be shared among the cloud, edge, and device. 

(4) The life cycle of a DLM: It usually includes the stages of design, 
training, operation and update. The entire life cycle of a DLM is normally 
performed on high performance servers with massive data. However, in 
the framework of cloud-edge-device collaboration, activities at each 
stage of the DL life cycle may occur at the device, edge, or cloud layers. 
For example, a lightweight DLM obtained through parameter sharing 
and pruning requires less computing resource while the accuracy of DLM 
inference can be ensured. This makes it possible to train and update 
DLMs on the edge nodes and end devices. 

4. Deployment and update mechanism of decision-making 
models 

4.1. Mechanism 

4.1.1. Vertically distributed deployment of DLMs 
(1) Conventional Framework: The Cloud centers with abundant 

computing and storage resources are responsible for storing/processing 
massive IIoT (Industrial IoT) data and creating/managing DLMs for 
various edge nodes and end robots. The Edge/Device layer is designed to 
flexibly utilize the result from DLM and interact with industrial robotics. 

Specifically, the Edge nodes/Devices collect various sensors data, which 
has different geographic-coverage ranges and formats, and upload the 
data to the cloud for intelligent analytics. In addition, the frequency and 
methods of data collection are also different. Therefore, it is essential to 
integrate data in a suitable format and preprocess it for DL. The cloud 
uses the cleaned data to create multiple DLMs, according to the char-
acteristics of Edges/Devices and IIoT data. Then it chooses the best DLM 
model that fits the individual task, and sends the model to the Edge/ 
Device along with the usage information. 

As for updating Edge/Device DLMs to improve model performance, 
centralized or local update strategies (offline/online) can be used: (1) As 
shown in Fig. 4(a), the centralized update means that the cloud uses 
retraining, continuous training, or incremental learning methods to 
update the existing DLMs with new data from the Edge/Device, and then 
redeploys the updated model to the Edge/Device. Note that retraining 
large and complex DLMs from scratch using all the available training 
data will take much time and computing resources, while continuous 
training may lead to overfitting. Typically, all parameters of a DLM 
should be updated. However, as new data collected from practical ap-
plications have similar patterns to the existing dataset, incremental 
learning based on local parameter update is usually used to improve the 
DLM’s accuracy in a short time and avoid overfitting [16]. (2) as shown 
in Fig. 4(b), the local update means that the DLMs deployed on the Edge 
nodes/Devices are separately further trained, and updated using native 
data to utilize the local data better and meet the needs of personalized 
tasks. 

Overall, in this deployment and update mode of the DLMs, the device 
layer and edge layer are not only responsible for the collection and 
preprocessing of raw data, but also for decision-making, which can 
avoid the delay problem that may exist in cloud-edge communication, 
and effectively guarantee the real-time performance of DLMs decision- 
making for smart industrial robots. At the same time, this mode allows 
DLMs to be trained and updated according to personalized tasks, with 
certain dynamics and adaptability. However, there are some unavoid-
able problems in this mode, (1) Due to the limited resource of the Edge/ 
Device, it is impossible to run large-scale DLMs, which may lead to poor 
optimization performance. Therefore, it is necessary to design light-
weight DLMs. (2) In a centralized update mechanism, the preprocessed 
data needs to be uploaded to the cloud for model training. If the network 
is congested (leading to a long delay), it may cause the problem of late- 
model updates. 3) In the local update mechanism, the small amount of 
local data may lead to the problem of DLM overfitting. 

(2) Distributed Deep Learning (DDL) Framework: Large DLMs are 
deployed in the cloud, while Edge nodes/end devices can only support 
shallow/lightweight DLMs. Therefore, a hierarchical exit mechanism for 
collaborative decision-making [17] can be adopted, as shown in Fig. 5, 
by performing a portion of the DLM inference computation on the edge 
rather than sending the raw input to the cloud. Using an exit point after 
Edge inference, we may decide on those samples that the Edge-DLM is 
confident about without sending any data to the Cloud. For more 
complicated cases, the output of the Edge-DLM as intermediate results is 
sent to the cloud, where further inference is performed using additional 
neural network layers to achieve higher accuracy, and a final decision is 
made. As shown in (d), this framework can be extended to multiple edge 
nodes that may be geographically distributed. Here, each edge node 
performs local computation as in (c). If the local exit point is not 
confident about the sample, each edge node sends intermediate output 
(a feature of raw data) to the cloud, where feature aggregation is per-
formed before making a final decision. Note that each feature aggrega-
tion or fusion method makes different assumptions about how the edge 
output should be combined, resulting in different system accuracy. Ag-
gregation methods can be: (1) Max pooling, which aggregates the input 
vectors by taking the max of each component. (2) Average pooling, 
which aggregates the input vectors by taking the average of each 
component. (3) Series connection, which simply concatenates the input 
vectors together (Fig. 6). 
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The vertical expansion can be achieved by adding an end device, as 
shown in (e). The edge node functions like the cloud, obtaining output 
from the end device, making a decision if possible, and forwarding its 
output to the cloud for further processing till a final decision is reached. 
In this way, samples that can be used to make correct decisions locally 
exist without any communication with the edge or cloud. Otherwise, the 
features extracted from samples are sent to the edge, and eventually to 
the cloud if necessary. This deployment framework can also be scaled 
geographically across the edge or device layers, as shown in (f) and (g). 

As for updating DLMs to improve model performance, centralized 
joint update or local update (offline/online) can be applied: (1) 
Centralized joint update means that the DDL model can be trained on a 
single powerful server or in the cloud, and then deployed to the edges/ 
devices. During training, the loss from each exit is combined during 
backpropagation so that the entire DDL model can be jointly trained, 
and each exit point achieves good accuracy related to its depth. (2) local 
update means that the DL models deployed on the device/edge/cloud 
are separately trained and updated according to their collaborative 

mechanisms, using native data to utilize the local data better. 
Overall, this deployment and update mode of DLMs has the following 

advantages: (1) DLMs of different scales are deployed on the cloud-edge- 
device and coordinated through the layered exit mechanism, which has 
the potential to satisfy the requirements of smart industrial robots for 
optimal real-time decision-making. (2) The intermediate Edge-DLM 
output (feature extraction) can be designed to be much smaller than 
the raw data (e.g., a raw image from a camera); therefore, communi-
cation costs required between the Edge and the Cloud can be drastically 
reduced. (3) It allows DLMs to be trained and updated according to 
personalized tasks, which can effectively meet the dynamic and adaptive 
requirements of MPPs for DL. However, there are still some inevitable 
problems with this model. For example, in a local update mechanism, an 
edge/device collects only a small amount of data within a limited area, 
and training a DLM from scratch can cause over-fitting problems and 
consume many computing resources [18]. A common way to solve this 
problem is using the Cloud-DLM to help train the Edge/Device-DLM 
[19]. When the core network is underloaded, the edge/device uploads 

Fig. 4. The update mechanism of Edge/Device DLM: (a) centralized update mechanism, (b) local update mechanism.  

Fig. 5. Cloud-edge deployment framework for DLMs. (c) introduces an edge node and a local exit point that may make decisions on samples before the cloud, (d) 
extends (c) by adding more edge nodes, the results are aggregated for decision-making. 
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the raw data to the cloud. Based on these data, the cloud uses the 
Cloud-DLM to predict the labels and sends them back to the edge/-
device. Finally, the labelled samples are used to retrain the 
Edge/Device-DLM. This process is ongoing and adaptive. As the number 
of labelled samples increases, the Edge/Device-DLM can further 
improve its accuracy. Furthermore, using the deep convolutional neural 
network to share its m (where m is a positive integer) lower layers to 
assist in training the shallow network is also an effective approach. The 
Cloud-DLM first sends its m lower layers to the edge/device, where some 
convolutional layers, some fully connected layers, and one softmax layer 
are connected to m lower layers to form the shallow DLM. Then, the 
shallow DLM is trained by freezing its m lower layers and fine-tuning the 
remaining layers with small data. This means that the shallow DLM uses 

the knowledge of the Cloud-DLM to assist its training. 
(3) Segmented deep learning (SDL) framework: The DLM will be 

divided and deployed on the cloud-edge device. The cloud, edge, and 
devices will be responsible for the computing tasks of different 
segmented models to generate final decision results. As shown in Fig. 7, 
the cases include cloud-edge-device joint deployment, cloud-edge joint 
deployment, and edge-device joint deployment based on different 
computing subjects participating in computing. At the same time, by 
means of the location of data and decision-making, the decision-making 
process can be divided into two ways: upward and downward decision- 
making. For example, as shown in (h), in the cloud-edge-device joint 
deployment mode for bearing fault diagnosis, the upward decision in-
dicates that the end device is not only used to collect vibration data for 

Fig. 6. Cloud-edge-device deployment framework for DLMs. (e) extends (c) by adding an end device, (f) extends (e) by adding multiple end devices results of which 
are aggregated for decision making, and (g) shows how the edges can also be distributed like the end devices. 
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fault diagnosis, but also undertakes part of the computing task of the 
DLM; then it transmits the intermediate data to the edge. The edge 
continues to perform the decision-making work, then transmits the 
processing results of the edge to the cloud, and the cloud continues to 
perform the decision-making work to obtain the fault type. In downward 
decision-making, new data is input from the cloud, and the result is 
obtained on the end device. 

As for updating SDL models to improve model performance, 
centralized training and update can be adopted. Fig. 8 shows that the 
entire SDL model can be trained on a single powerful server or in the 
cloud, then split and distributed to the cloud/edges/devices. In terms of 
training methods, retraining, continuous training, and incremental 
learning can be adopted under different application requirements. 

Overall, this deployment and update mode of DLMs has the following 
advantages: (1) Cloud, edge, and device jointly serve a large-scale DLM, 
which can ensure optimal decision-making. (2) The original data is 
replaced by the intermediate feature data, which can effectively reduce 
the cloud-edge-device communication traffic, and provide better pri-
vacy protection. However, this model still has some inevitable problems: 
(1) Transmission of the intermediate data between partitioned DLM 
parts is inevitable. This transmission will surely bring more delay for 
end-to-end deep learning applications. Also, the size of intermediate 
data is proportional to the size of the neural network layer where the 
division of the DLM occurs. If a DLM has been divided at a layer con-
taining 1000 neurons, the intermediate data size will be 1000 times the 
output parameter size [20]. Therefore, this joint deployment method 

Fig. 7. SDL Framework. (h) shows cloud-edge device joint deployment, (i) shows cloud-edge joint deployment, (j) shows edge-device joint deployment.  

Fig. 8. Centralized training and updated mechanism of SDL.  
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focuses on finding a suitable model split point and achieving a reason-
able balance between the amount of computation and the amount of 
communication. (2) Each DLM update needs to go through the costly 
process of training, segmentation, deployment, etc., which decreases the 
adaptability and dynamism of DLMs to personalized tasks. 

Potential application field: In the fault diagnosis [21] of robot 
machining tools, a lightweight DLM based on single-source information, 
such as vibration/current signals, on the edge node/end device can be 
deployed to realize real-time fault diagnosis. If the result does not ach-
ieve the acceptable accuracy/confidence, uploading extracted interme-
diate data (such as feature vectors) to the cloud and using a large-scale 
DLM for multi-source information fusion can ensure the reliability of 
decision-making for fault diagnosis. 

4.1.2. Horizontally distributed deployment of DLMs 
(1) Horizontal segmented deep learning (HSDL) framework: As shown in 

Fig. 9, according to the different computing power of cloud/edges/de-
vices, the model is split and allocated to different computing nodes so 
that each computing node executes a part of the model to jointly make 
decisions, which can reduce the computing pressure of a single node. 

As for updating HSDL models for better model performance, 
centralized training and update can be adopted. It means that the cloud 
center or a single powerful server adopts suitable training methods such 
as incremental learning, retraining, continuous training to train the 
model based on the new data, and then splits the trained model and 
distributes it to the cloud/edges/devices. 

This mode is similar to SDL, which inherits the advantages and dis-
advantages of SDL. The difference is that the data of HSDL flows in the 
same layer, while SDL flows across layers. 

(2) Federated learning framework: Federated learning (FL) is a 
distributed machine learning strategy that generates a global model by 
learning from multiple decentralized edges/devices. Specifically, a vir-
tual shared model is established on a public node, other nodes update 
parameters to the public node without violating privacy regulations, and 
the virtual model aggregates all the parameter data to form an optimal 
model. FL enables on-device training, keeps the client’s local data pri-
vate, and updates the global model based on the local model updates. 
While FL methods offer several advantages, including scalability and 
data privacy, they assume there are available computing resources at 
each edge/device. However, the IIoT-enabled devices, e.g., robots, CNC, 
and low-cost computing devices, may have limited processing ability, 
low bandwidth and power, or limited storage capacity. How to train 
distributed machine learning models for resource-constrained IIoT de-
vices is still an open question. 

Potential Application Field: In smart grasping and manipulation, 
computer vision can help the robot figure out how to grasp the items of 
different types. Deep learning is applied to improve the robot grasps 

over time. Data of a robot is shared with other robots through the cloud. 
In such a scene, FL can be adopted to generate a global grasping DLM by 
learning from multiple decentralized edges/robots. The above approach 
can effectively prevent the leakage of private information while 
completing the sharing of previous grasping experience/knowledge of 
the robots. 

4.1.3. Data Preparation for DLMs 
Another important dimension for DLMs is data preparation. For DL, 

there is a famous saying “garbage in, garbage out”, so preparing good 
data can help significantly improve the model performance. First, the 
engineers should understand the application scenario of smart robots for 
MPPs and find out the main influencing factors of decision-making. 
Second, after the raw data about the influencing factors is obtained, it 
should be cleaned first to improve the quality of data. Such a difficult but 
important process may involve dealing with incomplete, inconsistent, 
exceptional, noisy, erroneous data [22]. Third, the well-prepared 
high-quality data can then be used for DLMs. Following the mecha-
nisms introduced in Sections 4.1.1 and 4.1.2, those DLMs can be trained, 
deployed and updated based on those data. Four, the effect of DLMs for 
smart robot decision-making can be evaluated according to the out-
comes. Five, the results can be used to improve the data acquisitions, 
data preparation and collaborative mechanisms of DLMs until the whole 
system can work stably and produce satisfactory results. The data 
cleaning approaches should also be adopted in the robots (devices), edge 
nodes and cloud centers [23], when those nodes are responsible for data 
preparation and model training & updating. 

4.2. Key technologies 

Incremental learning: Incremental learning can make full use of newly 
generated data, and its advantages are mainly manifested in two aspects: 
on the one hand, because it does not need to save historical data, it re-
duces the storage space occupation; On the other hand, the incremental 
learning of the new samples makes full use of the historical training 
results, thereby significantly reducing the time of subsequent training. 

Transfer learning: Transfer learning is a new machine learning 
method that uses existing knowledge to solve problems in different but 
related fields. It relaxes two basic assumptions in traditional machine 
learning: (1) The training samples used for learning and the new test 
samples satisfy the condition of independent and identical distribution; 
(2) There must be enough training samples available to learn a good 
intelligence model. In general, the purpose of transfer learning is to 
transfer existing knowledge to solve learning problems with little or no 
labelled sample data in the target domain. 

DLM compression: The computing resources at the edge/device are 
relatively limited. For effective training of DLMs at the edge/device, it is 

Fig. 9. HSDL Framework.  
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important to reduce their computing resource requirement. Therefore, 
the compression of the model and the design of lightweight models are 
the key technologies. For example, in the case of DLMs, insensitive pa-
rameters can be reduced through parameter sharing and pruning, and 
then storage, communication, and computational overhead can be 
reduced. 

DLM segmentation: The model needs to be split into SDL or HSDL 
systems. Therefore, it is necessary to find an appropriate cutting point, 
try to keep the computationally complex work in the cloud center, and 
cut DLM in the place with the least amount of communication so as to 
realize the trade-off between the amount of calculation, and the amount 
of communication [24]. 

DLM selection technology: There is a lax trend for DLMs: the larger the 
model size (the higher the number of parameters), the higher the ac-
curacy. However, in edge/device computing scenarios, on the one hand, 
resource constraints cannot afford large-scale DLMs; on the other hand, 
different scenarios have different requirements for accuracy. In many 
cases, part of the accuracy can be sacrificed in exchange for better real- 
time performance. The DLM selection technology aims to seek a better 
trade-off between the resource consumption and accuracy of the model, 
and obtain the model that best meets the needs of the scenario. 

5. Conclusions and future work 

In this paper, a cloud-edge-device collaboration CMfg framework is 
proposed to address the high requirements for deep learning models 
(DLMs) of smart robots in mass personalization. Under this framework, 
different deployment and update mechanisms of DLMs are discussed in 
detail to support rapid response and high-performance decision-making 
of smart industrial robots for MPPs. In addition, key technologies such as 
incremental learning, transfer learning, DLM compression, DLM seg-
mentation, and Model selection technology are discussed and can pro-
vide references for research directions in this field. Our future work 
includes designing joint training and updating algorithms for collabo-
rative DLMs on cloud-edge-device, exploring theories and methods for 
the establishment of lightweight DLMs, and implementing typical in-
dustrial applications. 
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