
Robotics and Computer–Integrated Manufacturing 77 (2022) 102351

Available online 28 March 2022
0736-5845/© 2022 Elsevier Ltd. All rights reserved.

Cloud-edge-device collaboration mechanisms of deep learning models for
smart robots in mass personalization

Chen Yang a, Yingchao Wang a, Shulin Lan b,*, Lihui Wang c, Weiming Shen d, George Q. Huang e

a School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, PR China
b School of Economics and Management, University of Chinese Academy of Sciences, Beijing, PR China
c Department of Production Engineering, KTH Royal Institute of Technology, Sweden
d State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
e Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong, PR China

A R T I C L E I N F O

Keywords:
Cloud-edge-device collaboration
Cloud manufacturing
Smart robots
Deep learning
Mass personalization
Distributed deep learning
Collaborative learning

A B S T R A C T

Personalized products have gradually become the main business model and core competencies of many enter
prises. Large differences in components and short delivery cycles of such products, however, require industrial
robots in cloud manufacturing (CMfg) to be smarter, more responsive and more flexible. This means that the
deep learning models (DLMs) for smart robots should have the performance of real-time response, optimization,
adaptability, dynamism, and multimodal data fusion. To satisfy these typical demands, a cloud-edge-device
collaboration framework of CMfg is first proposed to support smart collaborative decision-making for smart
robots. Meanwhile, in this context, different deployment and update mechanisms of DLMs for smart robots are
analyzed in detail, aiming to support rapid response and high-performance decision-making by considering the
factors of data sources, data processing location, offline/online learning, data sharing and the life cycle of DLMs.
In addition, related key technologies are presented to provide references for technical research directions in this
field.

1. Introduction

Mass Personalized Products (MPPs), adapted to meet individual
customers’ requirements and needs, have gradually become one main
business model, as well as the core competitiveness of enterprises to
stabilize and expand the market. It requires product fulfillment (where
industrial robots play a key role) to be changeable, adaptable, and
configurable, because not only the final product but also the basic design
and product structure must be able to differentiate at the module and
parameter level to meet individual’s unique needs. As shown in Fig. 1,
Mass Products (MPs) focus on the large-scale production of common and
standardized products for the vast majority, while Mass Customization
Products (MCPs) and MPPs form the so-called "long-tail", because they
deal with the small batch production or the production of a personalized
product. Driven by technology development and market requirements,
MPPs can also produce substantial economic benefits when the tech
nology is mature and the operation cost is low enough. Therefore,
personalized products can fulfill customer needs for individual prefer
ences and uniqueness, resulting in increased revenue from boosting

overall sales to enhancing the average order value.
Cloud manufacturing (CMfg), which virtualizes and manages mass

manufacturing resources and capabilities and provides them as
manufacturing services, is a promising manufacturing mode [1–3].
However, personalized products have the characteristics of order-driven
production, strict processing times, high dynamic external conditions,
and considerable flexibility in the production process. These bring more
uncertainties to the production system (composed of industrial robots)
and significant challenges in the adaptive processing of related tasks for
robots in mass personalized production. Large differences in compo
nents and processes of MPPs require that robots in CMfg can intelligently
deal with individual MPPs parts, make timely adaptive decisions, and
perform dynamic reconfiguration [4] to manufacture efficiently mass
personalized products. For this reason, smart robots in CMfg need to
have the self-X (aware, optimizing, and learning) ability to learn new
methods, knowledge, and skills from their experience, collaborate with
human workers, make smart decisions [5], and face complex and dy
namic situations of MPPs.

By adopting a large number of hidden layers (mostly non-linear) and

* Corresponding author.
E-mail address: lanshulin@ucas.ac.cn (S. Lan).

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

https://doi.org/10.1016/j.rcim.2022.102351
Received 6 February 2022; Received in revised form 9 March 2022; Accepted 22 March 2022

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

2

combining automatic feature engineering with the learning process,
deep learning (DL) has a strong ability to learn the essential character
istics of the data from samples, thereby achieving outstanding perfor
mance. With the help of DL, robots endowed with self-X (aware,
optimizing, and learning) ability become smarter. However, since DL
often requires high-performance computing resources (GPUs, CPUs and
storage devices) for model training and execution on massive data,
exiting robots for manufacturing may not fulfill this stringent require
ment on computing capability. Meanwhile, there is an imprecise trend:
the more layers and parameters of a deep neural network, the more
accurate the decision-making, which would undoubtedly increase the
training and running cost of deep learning models (DLMs). A common
practice is to outsource (or upload) the shopfloor manufacturing data to
the cloud computing center, that can afford computing-intensive tasks,
and send the decision result to the smart robots. As a result, with the
deployment of a large number of robots and other sensor devices in
smart factories, the volume of real-time data generated can reach PB or
even ZB level [6] while transferring raw manufacturing data to remote
clouds, which inevitably leads to high latency, data loss, and network
congestion. Hence, this common cloud computing practice may fail to
fulfill the real-time requirement of time-sensitive tasks for smart robots.

As a supplement to cloud computing, edge computing can provide
timely computing services because of its proximity to manufacturing
resources (data sources) [7]. However, its limited computing resources
make it difficult to support large DLMs that have complex structures and
a large number of parameters. This means that learning from a large
amount of historical data still needs to be completed in the cloud center.
Moreover, MPPs require precise and timely control of the movements of
the end equipment. Therefore, it is necessary to migrate (part of) in
telligence from the cloud center to edge and end devices (mainly in
dustrial robots) to meet the requirements of MPPs scenarios for smart
real-time response through cloud-edge-device collaboration. To make
CMfg better cope with the impact of mass personalization, internal and
external uncertainties, and high dynamic factors, it is essential to
conduct research on the deep integration of cloud-edge-device collab
oration with CMfg for smart robots.

2. Mass personalized production and deep learning

2.1. Characteristics of mass personalized production

Personalized products that can be manufactured by additive
manufacturing are not the focus of this article. Instead, this paper dis
cusses a new discrete manufacturing paradigm: personalized product

realization tailored to the individual needs and preferences of con
sumers. A typical example is a personalized vehicle interior to match the
specific needs of an individual.

With the help of pervasive connections, MPPs require customer
engagement in product design and manufacturing processes, or even in
the entire life cycle of the product. To produce MPPs with a wide variety
and small batches in a short cycle, an open product platform is utilized to
allow various modules, including user-designed modules, to be inte
grated. Usually, an MPP consists of three types of modules [8]: common
modules that are shared across the product platform, customized mod
ules that allow customers to choose, mix and match, and personalized
modules that allow customers to create and design. The standard me
chanical, electrical and informational interfaces of these modules allow
easy assembly and disassembly.

To manufacture MPPs, production resources, cloud platforms, edge
servers, and upper monitoring terminals should be closely connected. To
support efficient manufacturing of MPPs, the CMfg system should have
the ability of dynamic and rapid reconfiguration for different product
variants. To make smart decisions and control the system (including
system reconfiguration) for MPPs, it is necessary to have the real-time
pervasive monitoring of manufacturing resources and smart data pro
cessing ability.

2.2. DL-enabled smart robots for mass personalized production

(1) Real-time smart decision-making for machine-to-machine
collaboration

As shown in Fig. 2, the MPPs require the CMfg system to (1) intel
ligently identify different personalized products/components, perceive
their different shapes, sizes, materials and orientation, and perform
necessary system reconfiguration to achieve fast and flexible loading,
unloading, clamping, etc.; (2) according to individual order re
quirements, accurately locate and dynamically organize production re
sources to achieve on-demand processing through the interaction and
collaboration between manufacturing resources (equipment/products/
workpieces). The realization of the above requirements largely depends
on the application of DL in smart robots. For example, CNN is used to
realize the identification and quality inspection of workpieces, and
LSTM is used to realize short-term AGV flow prediction in the workshop
[9]. Moreover, DL methods are adopted to identify machine faults and
predict the remaining useful life (RUL) of such machinery as induction
motors, gearboxes, and bearings [10,11].

(2) Human-centered collaboration paradigm
The concept of Industry 5.0 puts more emphasis on human-centered

Fig. 1. The long tail production module.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

3

production and increases workers’ job satisfaction and safety. Against
this backdrop, in the process of mass personalized production, the effi
cient, intelligent and safe collaboration between humans and robots
[12] can be realized through the interactive fusion of multimodal data,
which interconnects and combines the strengths of humans and those of
robots. In this area, DL has achieved relatively successful applications.
For example, based on DL, it is now possible to realize the recognition of
employee fatigue/unsafe operations, motion trajectory prediction,
speech recognition, gesture recognition, emotion recognition, etc.

(3) Dynamic resource scheduling
MPPs are characterized by multi-variety, small-batch, and short-

cycle production. These features of MPPs require the job-shop sched
uling system to be more intelligent and responsive, so applying DL to
production performance prediction and workshop resource scheduling
can effectively increase the usefulness of scheduling to efficiently opti
mize resource management and usage for individual production needs
and dynamic environments. In addition, the scheduling of computing
and communication resource that supports intelligent decision-making
and collaboration between manufacturing resources requires and uses
DL to meet the requirements of deterministic routing, the right data
arrival sequence and reliable computating. An example of this is the
realization of short-term data traffic prediction and network resource
allocation for AGVs based on DL.

2.3. Challenges of smart robots in mass personalization for deep learning

The development of MPPs calls for in-depth application of DL in
smart industrial robots and puts forward higher requirements for DL’s
performance on the real-time response, optimization, adaptability,
dynamism, multimodal data fusion and reliability.

(1) Real-time response: One major challenge of applying DL to in
dustrial robots for MPPs comes from the uncertainties and dynamical
conditions of the system configuration and production information. As
the products are individualized and versatile, there are circumstances in
which the planned operation has to be modified after the production
process is initiated. In addition, MPPs may encounter urgent events that
are disruptive to production, such as rush orders, machine failures, part-
programming errors, and reconfiguration. To overcome such challenges,
real-time decision-making capability needs to be incorporated into the
manufacturing system [12]. This requires DL capable of making smart
decisions quickly, usually in milliseconds.

(2) Optimization: MPPs have higher requirements for DL applications
on the accuracy of prediction/classification and the optimization degree
of resource scheduling for personalized modules. For example, the
prerequisite for an effective predictive maintenance strategy is an ac
curate prediction of the RUL of the machine [13,14]. The results of the
RUL prediction can guide companies to develop maintenance
decision-making methods, implement remote maintenance to minimize
unplanned machine downtime, and maximize service life to reduce

maintenance costs. However, MPPs involve a wide variety of products,
resulting in complex machine operating conditions, and the nonlinear
decline of machine performance. Therefore, MPPs put forward higher
accuracy requirements for DL-based predictive maintenance of
machines.

(3) Adaptability: DL is required to be suitable for different processing
scenarios of MPPs. For example, to ensure rapid response to consumer
demands, the manufacturing system should have the flexibility in
creating personalized modules with different features and assembling
these modules with other modules from other manufacturers. This re
quires DL-based applications in smart industrial robots, such as parts
recognition and quality inspection, to have adaptive learning capabil
ities and adapt to modules of all types - common, customized, or
personalized.

(4) Dynamism: Facing MPPs, developing an optimal DLM is a
considerable challenge. Note that a new DLM has to be used each time
when the production of a new individualized product starts. Besides,
various disrupting factors in the production workshop may occur and
affect the practical activities of robots. These require the ability of smart
robots to quickly and dynamically adjust and update the DLM network
structure and parameters according to the changes in tasks.

(5) Multimodal data fusion: Multimodal data, such as images and
videos, comes from different industrial robots and can provide more
comprehensive and accurate information on workshop operation status
through mutual support, supplement, and correction. By contrast,
human-centered collaboration requires multimodal data fusion such as
facial expressions, speech, and body movements to fully perceive, un
derstand, and match the behavioral characteristics and habits of
different workers. Traditionally, the feature fusion method is used for
multimodal data fusion. However, due to the fact that multimodal data
is collected at different locations and their features vary in size, mean
ing, redundancy, and importance for decision-making, how to achieve
efficient multimodal data fusion is a key challenge for DL.

(6) Reliability: Most robotics applications are reliability-critical, such
as material handling and human-robot collaboration. Unfortunately, DL-
based methods are very fragile and susceptible to adversarial examples.
An adversarial example which comes from erroneous sensor signals,
exceptional data, etc. would cause the generation of unexpected or even
false results when it is fed into DLMs. Since such adversarial perturba
tions can cause instability in DL performance, reliable training,
deployment, and decision-making mechanisms of DLMs are essential.
Therefore, mechanisms of reliable end-to-end communication and data
verification should be designed to minimize the probability of data
delay, data loss, and erroneous data for DLMs.

Fig. 2. The case of MPPs processing.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

4

3. Cloud-edge-device collaboration based cloud manufacturing
architecture

3.1. Overall framework

Although the central cloud for DL can effectively guarantee DL’s
optimization performance (by deploying and running large-scale DLMs),
it usually suffers from latency and reliability issues because real-time
decision-making cannot be guaranteed. Latency issues are caused by
the bidirectional communication: between industrial robots and the
cloud; between the cloud and actuators of locally-networked robots
during the return of meaningful inference results from the cloud. Those
latency issues may also lead to limited adaptability and dynamics of DL.
The exceptional events that may occur during the bidirectional long-
distance communication will harm the reliability of DL based
decision-making applications in smart robotics. The long transmission
delay of data also leads to reliability problems for time-sensitive DL
applications for smart robotics.

This paper designed a hierarchical and distributed CMfg platform to
address the aforementioned challenges. Specifically, through the deep
integration of cyber-physical systems, edge computing, and CMfg, a
multi-level and highly flexible CMfg system with "Cloud-Edge-Device"
collaboration ability is built to support distributed training, deployment,
operation, and update of DLMs, that satisfy MPPs’ requirements for DL’s
performance on real-time response, optimization, adaptability, dyna
mism, multimodal data fusion and reliability. Then, flexible and effi
cient manufacturing of MPPs can be realized, quickly responding to a
complex and changing buyer’s market and meeting customers’ needs for
customized and personalized products. As shown in Fig. 3, the CMfg
system framework with "Cloud-Edge-Device" collaboration is divided
into three layers: the Device layer (production resource Layer), the Edge
layer, and the Cloud layer.

(1) Device layer: The device layer mainly includes materials and
smart industrial robots, such as AGVs, conveyors, robotic arms and other
controlled platforms, which serve as “the physical layer” for the entire
CMfg system. Different devices, machinery and equipment, such as as
sembly, welding, painting, packaging and machining robots, are
controlled by their corresponding automatic control systems. Smart

robots are equipped with more powerful sensors, such as 3D cameras,
range and range sensors, to monitor the objects and the environments.
DL can be implemented at the device layer in small and low-power
embedded computing devices, such as FPGAs, DSP or ARM. Therefore,
it is crucial to meet the real-time requirement for the device layer in
MPPs’ CMfg.

(2) Edge layer: The edge layer is generally composed of wireless base
stations, small data centers (edge servers), and other edge nodes [15],
which are usually deployed in the workshop/factory and mainly provide
edge computing, storage, and networking services in the fixed or mobile
way. The edge nodes are placed near the devices/robots, and can pro
vide low-latency edge computing services for robot DL applications, but
the computing power is relatively limited. For example, an edge node
like an AI accelerator can be mounted on the robot and integrated into
the robot controllers using hardware interfaces, permitting a simple and
profitable combination of AI algorithms and robot control logic. The AI
accelerator enables the efficient processing of neural network structures
and the use of DL algorithms, such as for vision-based applications.
Furthermore, the interconnection of physical devices (e.g., robots, ma
chines and conveyor belts) and edge nodes using wires or wireless net
works is implemented to compose manufacturing subsystems. Different
manufacturing subsystems can meet different mission requirements,
ensuring the adaptability and dynamics of DL.

(3) Cloud layer: In the cloud layer, a large number of servers and
storage devices are used as the hardware base to support the mode of
IaaS, SaaS, and PaaS, providing efficient parallel computing services,
and large-scale data storage space for DL applications to ensure the
optimization of DL-based decisions. The specific implementation can be
a private cloud, developed by the large manufacturing enterprise and
located inside its factory, or a third-party public cloud, built by the large
IT vendor to provide cloud services for small and med-size enterprises.
In either case, edge nodes would be placed much nearer to the robots
(data sources) than that of the cloud.

Overall, in our designed architecture, edge nodes placed at the
location as close as possible to the data source (smart robots), can deliver
strong benefits, including faster insights, improved response times and
better bandwidth availability. As smart robots’ data is processed and
analyzed closer to the point where the data is created, and the data does

Fig. 3. Cloud-edge-device collaboration architecture.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

5

not traverse over a network to a cloud to be processed, then latency and
possible exceptional events (due to frequently unpredictable network
bandwidth, latency or reliability) are significantly reduced. Meanwhile,
the reliability of DL-based robotics applications is improved. In addition,
reliable end-to-end communication (via multi-path transmission of
multiple data copies) and data verification mechanism can be further
introduced to minimize the probability of data delay, data loss, and
erroneous data for DLMs.

3.2. Cloud-edge-device collaboration elements

(1) Data processing location: The data processing pipeline for DL
generally consists of data collection, preprocessing, storage, analysis,
and decision-making. Usually, the device layer takes the responsibility
for data acquisition. The edge layer preprocesses the collected data to
ease data analysis, then sends the resulting data to the cloud for storage
and analysis, and issues decisions to control the devices. However, in the
cloud-edge-device framework, each stage of a data processing pipeline
may occur at the device, edge, or cloud layers, depending on the design
of smart decision-making mechanisms. For example, the device layer
may be responsible not only for data collection but also for data pre
processing and simple decision-making; the edge layer may also un
dertake the data preprocessing and real-time decision-making functions.

(2) Offline/Online learning: The data processing and analytics for DL
can be performed in an online or offline way. Offline training, decision-
making and updating of large-scale DLMs using massive multi-
dimensional and multi-source data are usually performed in the cloud
with abundant computing and storage resources for time-insensitive
applications. For edge nodes and smart robots near to data sources or
shopfloor things, they are normally used to conduct online incremental
training and updating of lightweight DLMs based on new local data for
time-critical applications. They can also collaboratively realize online
training, decision-making and updating of large-scale DLMs through
joint training and collaborative approaches.

(3) Data sharing: There are three kinds of data-sharing among the
cloud, edges, and devices: data, information, and knowledge. Data is
collected from IoT sensors of smart robots. Information is useful data,
obtained through data preprocessing methods, including data cleaning,
transformation, extraction, merging and so on. Knowledge is the oper
ating principle or law of the system obtained via information processing.
Data or information sharing is common, as end devices and edge nodes
can perform data collection or preprocessing. In the cloud-edge-device
collaboration architecture, knowledge sharing can contribute to the
reduction of data transmission, e.g., extracted features and DLM pa
rameters can be shared among the cloud, edge, and device.

(4) The life cycle of a DLM: It usually includes the stages of design,
training, operation and update. The entire life cycle of a DLM is normally
performed on high performance servers with massive data. However, in
the framework of cloud-edge-device collaboration, activities at each
stage of the DL life cycle may occur at the device, edge, or cloud layers.
For example, a lightweight DLM obtained through parameter sharing
and pruning requires less computing resource while the accuracy of DLM
inference can be ensured. This makes it possible to train and update
DLMs on the edge nodes and end devices.

4. Deployment and update mechanism of decision-making
models

4.1. Mechanism

4.1.1. Vertically distributed deployment of DLMs
(1) Conventional Framework: The Cloud centers with abundant

computing and storage resources are responsible for storing/processing
massive IIoT (Industrial IoT) data and creating/managing DLMs for
various edge nodes and end robots. The Edge/Device layer is designed to
flexibly utilize the result from DLM and interact with industrial robotics.

Specifically, the Edge nodes/Devices collect various sensors data, which
has different geographic-coverage ranges and formats, and upload the
data to the cloud for intelligent analytics. In addition, the frequency and
methods of data collection are also different. Therefore, it is essential to
integrate data in a suitable format and preprocess it for DL. The cloud
uses the cleaned data to create multiple DLMs, according to the char
acteristics of Edges/Devices and IIoT data. Then it chooses the best DLM
model that fits the individual task, and sends the model to the Edge/
Device along with the usage information.

As for updating Edge/Device DLMs to improve model performance,
centralized or local update strategies (offline/online) can be used: (1) As
shown in Fig. 4(a), the centralized update means that the cloud uses
retraining, continuous training, or incremental learning methods to
update the existing DLMs with new data from the Edge/Device, and then
redeploys the updated model to the Edge/Device. Note that retraining
large and complex DLMs from scratch using all the available training
data will take much time and computing resources, while continuous
training may lead to overfitting. Typically, all parameters of a DLM
should be updated. However, as new data collected from practical ap
plications have similar patterns to the existing dataset, incremental
learning based on local parameter update is usually used to improve the
DLM’s accuracy in a short time and avoid overfitting [16]. (2) as shown
in Fig. 4(b), the local update means that the DLMs deployed on the Edge
nodes/Devices are separately further trained, and updated using native
data to utilize the local data better and meet the needs of personalized
tasks.

Overall, in this deployment and update mode of the DLMs, the device
layer and edge layer are not only responsible for the collection and
preprocessing of raw data, but also for decision-making, which can
avoid the delay problem that may exist in cloud-edge communication,
and effectively guarantee the real-time performance of DLMs decision-
making for smart industrial robots. At the same time, this mode allows
DLMs to be trained and updated according to personalized tasks, with
certain dynamics and adaptability. However, there are some unavoid
able problems in this mode, (1) Due to the limited resource of the Edge/
Device, it is impossible to run large-scale DLMs, which may lead to poor
optimization performance. Therefore, it is necessary to design light
weight DLMs. (2) In a centralized update mechanism, the preprocessed
data needs to be uploaded to the cloud for model training. If the network
is congested (leading to a long delay), it may cause the problem of late-
model updates. 3) In the local update mechanism, the small amount of
local data may lead to the problem of DLM overfitting.

(2) Distributed Deep Learning (DDL) Framework: Large DLMs are
deployed in the cloud, while Edge nodes/end devices can only support
shallow/lightweight DLMs. Therefore, a hierarchical exit mechanism for
collaborative decision-making [17] can be adopted, as shown in Fig. 5,
by performing a portion of the DLM inference computation on the edge
rather than sending the raw input to the cloud. Using an exit point after
Edge inference, we may decide on those samples that the Edge-DLM is
confident about without sending any data to the Cloud. For more
complicated cases, the output of the Edge-DLM as intermediate results is
sent to the cloud, where further inference is performed using additional
neural network layers to achieve higher accuracy, and a final decision is
made. As shown in (d), this framework can be extended to multiple edge
nodes that may be geographically distributed. Here, each edge node
performs local computation as in (c). If the local exit point is not
confident about the sample, each edge node sends intermediate output
(a feature of raw data) to the cloud, where feature aggregation is per
formed before making a final decision. Note that each feature aggrega
tion or fusion method makes different assumptions about how the edge
output should be combined, resulting in different system accuracy. Ag
gregation methods can be: (1) Max pooling, which aggregates the input
vectors by taking the max of each component. (2) Average pooling,
which aggregates the input vectors by taking the average of each
component. (3) Series connection, which simply concatenates the input
vectors together (Fig. 6).

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

6

The vertical expansion can be achieved by adding an end device, as
shown in (e). The edge node functions like the cloud, obtaining output
from the end device, making a decision if possible, and forwarding its
output to the cloud for further processing till a final decision is reached.
In this way, samples that can be used to make correct decisions locally
exist without any communication with the edge or cloud. Otherwise, the
features extracted from samples are sent to the edge, and eventually to
the cloud if necessary. This deployment framework can also be scaled
geographically across the edge or device layers, as shown in (f) and (g).

As for updating DLMs to improve model performance, centralized
joint update or local update (offline/online) can be applied: (1)
Centralized joint update means that the DDL model can be trained on a
single powerful server or in the cloud, and then deployed to the edges/
devices. During training, the loss from each exit is combined during
backpropagation so that the entire DDL model can be jointly trained,
and each exit point achieves good accuracy related to its depth. (2) local
update means that the DL models deployed on the device/edge/cloud
are separately trained and updated according to their collaborative

mechanisms, using native data to utilize the local data better.
Overall, this deployment and update mode of DLMs has the following

advantages: (1) DLMs of different scales are deployed on the cloud-edge-
device and coordinated through the layered exit mechanism, which has
the potential to satisfy the requirements of smart industrial robots for
optimal real-time decision-making. (2) The intermediate Edge-DLM
output (feature extraction) can be designed to be much smaller than
the raw data (e.g., a raw image from a camera); therefore, communi
cation costs required between the Edge and the Cloud can be drastically
reduced. (3) It allows DLMs to be trained and updated according to
personalized tasks, which can effectively meet the dynamic and adaptive
requirements of MPPs for DL. However, there are still some inevitable
problems with this model. For example, in a local update mechanism, an
edge/device collects only a small amount of data within a limited area,
and training a DLM from scratch can cause over-fitting problems and
consume many computing resources [18]. A common way to solve this
problem is using the Cloud-DLM to help train the Edge/Device-DLM
[19]. When the core network is underloaded, the edge/device uploads

Fig. 4. The update mechanism of Edge/Device DLM: (a) centralized update mechanism, (b) local update mechanism.

Fig. 5. Cloud-edge deployment framework for DLMs. (c) introduces an edge node and a local exit point that may make decisions on samples before the cloud, (d)
extends (c) by adding more edge nodes, the results are aggregated for decision-making.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

7

the raw data to the cloud. Based on these data, the cloud uses the
Cloud-DLM to predict the labels and sends them back to the edge/
device. Finally, the labelled samples are used to retrain the
Edge/Device-DLM. This process is ongoing and adaptive. As the number
of labelled samples increases, the Edge/Device-DLM can further
improve its accuracy. Furthermore, using the deep convolutional neural
network to share its m (where m is a positive integer) lower layers to
assist in training the shallow network is also an effective approach. The
Cloud-DLM first sends its m lower layers to the edge/device, where some
convolutional layers, some fully connected layers, and one softmax layer
are connected to m lower layers to form the shallow DLM. Then, the
shallow DLM is trained by freezing its m lower layers and fine-tuning the
remaining layers with small data. This means that the shallow DLM uses

the knowledge of the Cloud-DLM to assist its training.
(3) Segmented deep learning (SDL) framework: The DLM will be

divided and deployed on the cloud-edge device. The cloud, edge, and
devices will be responsible for the computing tasks of different
segmented models to generate final decision results. As shown in Fig. 7,
the cases include cloud-edge-device joint deployment, cloud-edge joint
deployment, and edge-device joint deployment based on different
computing subjects participating in computing. At the same time, by
means of the location of data and decision-making, the decision-making
process can be divided into two ways: upward and downward decision-
making. For example, as shown in (h), in the cloud-edge-device joint
deployment mode for bearing fault diagnosis, the upward decision in
dicates that the end device is not only used to collect vibration data for

Fig. 6. Cloud-edge-device deployment framework for DLMs. (e) extends (c) by adding an end device, (f) extends (e) by adding multiple end devices results of which
are aggregated for decision making, and (g) shows how the edges can also be distributed like the end devices.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

8

fault diagnosis, but also undertakes part of the computing task of the
DLM; then it transmits the intermediate data to the edge. The edge
continues to perform the decision-making work, then transmits the
processing results of the edge to the cloud, and the cloud continues to
perform the decision-making work to obtain the fault type. In downward
decision-making, new data is input from the cloud, and the result is
obtained on the end device.

As for updating SDL models to improve model performance,
centralized training and update can be adopted. Fig. 8 shows that the
entire SDL model can be trained on a single powerful server or in the
cloud, then split and distributed to the cloud/edges/devices. In terms of
training methods, retraining, continuous training, and incremental
learning can be adopted under different application requirements.

Overall, this deployment and update mode of DLMs has the following
advantages: (1) Cloud, edge, and device jointly serve a large-scale DLM,
which can ensure optimal decision-making. (2) The original data is
replaced by the intermediate feature data, which can effectively reduce
the cloud-edge-device communication traffic, and provide better pri
vacy protection. However, this model still has some inevitable problems:
(1) Transmission of the intermediate data between partitioned DLM
parts is inevitable. This transmission will surely bring more delay for
end-to-end deep learning applications. Also, the size of intermediate
data is proportional to the size of the neural network layer where the
division of the DLM occurs. If a DLM has been divided at a layer con
taining 1000 neurons, the intermediate data size will be 1000 times the
output parameter size [20]. Therefore, this joint deployment method

Fig. 7. SDL Framework. (h) shows cloud-edge device joint deployment, (i) shows cloud-edge joint deployment, (j) shows edge-device joint deployment.

Fig. 8. Centralized training and updated mechanism of SDL.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

9

focuses on finding a suitable model split point and achieving a reason
able balance between the amount of computation and the amount of
communication. (2) Each DLM update needs to go through the costly
process of training, segmentation, deployment, etc., which decreases the
adaptability and dynamism of DLMs to personalized tasks.

Potential application field: In the fault diagnosis [21] of robot
machining tools, a lightweight DLM based on single-source information,
such as vibration/current signals, on the edge node/end device can be
deployed to realize real-time fault diagnosis. If the result does not ach
ieve the acceptable accuracy/confidence, uploading extracted interme
diate data (such as feature vectors) to the cloud and using a large-scale
DLM for multi-source information fusion can ensure the reliability of
decision-making for fault diagnosis.

4.1.2. Horizontally distributed deployment of DLMs
(1) Horizontal segmented deep learning (HSDL) framework: As shown in

Fig. 9, according to the different computing power of cloud/edges/de
vices, the model is split and allocated to different computing nodes so
that each computing node executes a part of the model to jointly make
decisions, which can reduce the computing pressure of a single node.

As for updating HSDL models for better model performance,
centralized training and update can be adopted. It means that the cloud
center or a single powerful server adopts suitable training methods such
as incremental learning, retraining, continuous training to train the
model based on the new data, and then splits the trained model and
distributes it to the cloud/edges/devices.

This mode is similar to SDL, which inherits the advantages and dis
advantages of SDL. The difference is that the data of HSDL flows in the
same layer, while SDL flows across layers.

(2) Federated learning framework: Federated learning (FL) is a
distributed machine learning strategy that generates a global model by
learning from multiple decentralized edges/devices. Specifically, a vir
tual shared model is established on a public node, other nodes update
parameters to the public node without violating privacy regulations, and
the virtual model aggregates all the parameter data to form an optimal
model. FL enables on-device training, keeps the client’s local data pri
vate, and updates the global model based on the local model updates.
While FL methods offer several advantages, including scalability and
data privacy, they assume there are available computing resources at
each edge/device. However, the IIoT-enabled devices, e.g., robots, CNC,
and low-cost computing devices, may have limited processing ability,
low bandwidth and power, or limited storage capacity. How to train
distributed machine learning models for resource-constrained IIoT de
vices is still an open question.

Potential Application Field: In smart grasping and manipulation,
computer vision can help the robot figure out how to grasp the items of
different types. Deep learning is applied to improve the robot grasps

over time. Data of a robot is shared with other robots through the cloud.
In such a scene, FL can be adopted to generate a global grasping DLM by
learning from multiple decentralized edges/robots. The above approach
can effectively prevent the leakage of private information while
completing the sharing of previous grasping experience/knowledge of
the robots.

4.1.3. Data Preparation for DLMs
Another important dimension for DLMs is data preparation. For DL,

there is a famous saying “garbage in, garbage out”, so preparing good
data can help significantly improve the model performance. First, the
engineers should understand the application scenario of smart robots for
MPPs and find out the main influencing factors of decision-making.
Second, after the raw data about the influencing factors is obtained, it
should be cleaned first to improve the quality of data. Such a difficult but
important process may involve dealing with incomplete, inconsistent,
exceptional, noisy, erroneous data [22]. Third, the well-prepared
high-quality data can then be used for DLMs. Following the mecha
nisms introduced in Sections 4.1.1 and 4.1.2, those DLMs can be trained,
deployed and updated based on those data. Four, the effect of DLMs for
smart robot decision-making can be evaluated according to the out
comes. Five, the results can be used to improve the data acquisitions,
data preparation and collaborative mechanisms of DLMs until the whole
system can work stably and produce satisfactory results. The data
cleaning approaches should also be adopted in the robots (devices), edge
nodes and cloud centers [23], when those nodes are responsible for data
preparation and model training & updating.

4.2. Key technologies

Incremental learning: Incremental learning can make full use of newly
generated data, and its advantages are mainly manifested in two aspects:
on the one hand, because it does not need to save historical data, it re
duces the storage space occupation; On the other hand, the incremental
learning of the new samples makes full use of the historical training
results, thereby significantly reducing the time of subsequent training.

Transfer learning: Transfer learning is a new machine learning
method that uses existing knowledge to solve problems in different but
related fields. It relaxes two basic assumptions in traditional machine
learning: (1) The training samples used for learning and the new test
samples satisfy the condition of independent and identical distribution;
(2) There must be enough training samples available to learn a good
intelligence model. In general, the purpose of transfer learning is to
transfer existing knowledge to solve learning problems with little or no
labelled sample data in the target domain.

DLM compression: The computing resources at the edge/device are
relatively limited. For effective training of DLMs at the edge/device, it is

Fig. 9. HSDL Framework.

C. Yang et al.

Robotics and Computer-Integrated Manufacturing 77 (2022) 102351

10

important to reduce their computing resource requirement. Therefore,
the compression of the model and the design of lightweight models are
the key technologies. For example, in the case of DLMs, insensitive pa
rameters can be reduced through parameter sharing and pruning, and
then storage, communication, and computational overhead can be
reduced.

DLM segmentation: The model needs to be split into SDL or HSDL
systems. Therefore, it is necessary to find an appropriate cutting point,
try to keep the computationally complex work in the cloud center, and
cut DLM in the place with the least amount of communication so as to
realize the trade-off between the amount of calculation, and the amount
of communication [24].

DLM selection technology: There is a lax trend for DLMs: the larger the
model size (the higher the number of parameters), the higher the ac
curacy. However, in edge/device computing scenarios, on the one hand,
resource constraints cannot afford large-scale DLMs; on the other hand,
different scenarios have different requirements for accuracy. In many
cases, part of the accuracy can be sacrificed in exchange for better real-
time performance. The DLM selection technology aims to seek a better
trade-off between the resource consumption and accuracy of the model,
and obtain the model that best meets the needs of the scenario.

5. Conclusions and future work

In this paper, a cloud-edge-device collaboration CMfg framework is
proposed to address the high requirements for deep learning models
(DLMs) of smart robots in mass personalization. Under this framework,
different deployment and update mechanisms of DLMs are discussed in
detail to support rapid response and high-performance decision-making
of smart industrial robots for MPPs. In addition, key technologies such as
incremental learning, transfer learning, DLM compression, DLM seg
mentation, and Model selection technology are discussed and can pro
vide references for research directions in this field. Our future work
includes designing joint training and updating algorithms for collabo
rative DLMs on cloud-edge-device, exploring theories and methods for
the establishment of lightweight DLMs, and implementing typical in
dustrial applications.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported in part by the National Key Research and
Development Program of China under Grant 2021YFB1715700, in part
by the National Natural Science Foundation of China under Grant
62103046 and 72192844, in part by the Fundamental Research Funds
for the Central Universities under Grant E1E40805X2 and the State Key
Laboratory of Digital Manufacturing Equipment and Technology under

Grant DMETKF2021012.

References

[1] T.Y. Lin, et al., Efficient container virtualization-based digital twin simulation of
smart industrial systems, J. Clean. Prod. 281 (2021).

[2] F. Tao, J. Cheng, Q. Qi, IIHub: an industrial Internet-of-Things hub toward smart
manufacturing based on cyber-physical system, IEEE Trans. Ind. Inform. 14 (5)
(2017) 2271–2280.

[3] C. Yang, S. Lan, L. Wang, W. Shen, G.Q. Huang, Big data driven edge-cloud
collaboration architecture for cloud manufacturing: a software defined perspective,
IEEE Access 8 (2020) 45938–45950.

[4] C. Yang, F. Liao, S. Lan, L. Wang, W. Shen, G.Q. Huang, Flexible resource
scheduling for software-defined cloud manufacturing with edge computing,
Engineering (2021).

[5] X. Li, P. Zheng, J. Bao, L. Gao, X. Xu, Achieving cognitive mass personalization via
the self-X cognitive manufacturing network: an industrial-knowledge-graph-and
graph-embedding-enabled pathway, Engineering (2021).

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges, IEEE
Internet Things J. 3 (5) (2016) 637–646.

[7] C. Yang, W. Shen, X. Wang, The internet of things in manufacturing: key issues and
potential applications, IEEE Syst. Man Cybern. Mag. 4 (1) (2018) 6–15.

[8] S.J. Hu, Evolving paradigms of manufacturing: from mass production to mass
customization and personalization, Procedia CIRP 7 (2013) 3–8.

[9] Z. Zhao, W. Chen, X. Wu, P.C.Y. Chen, J. Liu, LSTM network: a deep learning
approach for short-term traffic forecast, IET Intell. Transp. Syst. 11 (2) (2017)
68–75.

[10] L. Zuo, L. Zhang, Z.H. Zhang, X.L. Luo, Y. Liu, A spiking neural network-based
approach to bearing fault diagnosis, J. Manuf. Syst. 61 (2021) 714–724.

[11] Y. Ding, M. Jia, Q. Miao, P. Huang, Remaining useful life estimation using deep
metric transfer learning for kernel regression, Reliab. Eng. Syst. Saf. 212 (2021),
107583.

[12] H. Zhong, X. Li, L. Gao, C. Li, Toward safe human-robot interaction: a fast-response
admittance control method for series elastic actuator, IEEE Trans. Autom. Sci. Eng.
(2021).

[13] J. Wan, et al., A manufacturing big data solution for active preventive
maintenance, IEEE Trans. Ind. Inform. 13 (4) (2017) 2039–2047.

[14] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, J. Lin, Machinery health prognostics: a
systematic review from data acquisition to RUL prediction, Mech. Syst. Signal
Process. 104 (2018) 799–834.

[15] H. Yamanaka, E. Kawai, Y. Teranishi, H. Harai, Proximity-aware IaaS in an edge
computing environment with user dynamics, IEEE Trans. Netw. Serv. Manag. 16
(3) (2019) 1282–1296.

[16] L. Ren, Y. Liu, X. Wang, J. Lu, M.J. Deen, Cloud-edge-based lightweight temporal
convolutional networks for remaining useful life prediction in IIoT, IEEE Internet
Things J. 8 (16) (2021) 12578–12587.

[17] S. Teerapittayanon, B. McDanel, H.T. Kung, Distributed deep neural networks over
the cloud, the edge and end devices, in: Proceedings of the International
Conference on Distributed Computing Systems, 2017, pp. 328–339.

[18] C. Ding, A. Zhou, Y. Liu, R. Chang, C.H. Hsu, S. Wang, A cloud-edge collaboration
framework for cognitive service, IEEE Trans. Cloud Comput. (2020).

[19] T. Jing, X. Tian, H. Hu, L. Ma, Cloud-edge collaboration framework with deep
learning-based for remaining useful life prediction of machinery, IEEE Trans. Ind.
Inform. (2021).

[20] S. Kum, Y. Kim, J. Moon, Deploying deep neural network on edge-cloud
environment, in: Proceedings of the International Conference on Information and
Communication Technology Convergence (ICTC), 2019, pp. 242–244.

[21] L. Wen, X. Li, L. Gao, Y. Zhang, A new convolutional neural network-based data-
driven fault diagnosis method, IEEE Trans. Ind. Electron. 65 (7) (2017) 5990–5998.

[22] X. Wang, C. Wang, Time series data cleaning: a survey, IEEE Access 8 (2019)
1866–1881.

[23] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, J. Sun, Apache IoTDB: time-
series database for internet of things, Proc. VLDB Endow. 13 (12) (2020)
2901–2904.

[24] Y. Kang, et al., Neurosurgeon: collaborative intelligence between the cloud and
mobile edge, ACM SIGARCH Comput. Archit. News 45 (1) (2017) 615–629.

C. Yang et al.

