

Abstract—The offloading of computation-intensive tasks to an

edge server close to the resource-constrained mobile devices can

provide better application performance and user experience.

However, with the rapid growth of mobile devices connected to

the edge server, it is challenging to directly obtain an optimal task

offloading scheme due to the increasing computational cost and

problem scale. In this paper, we model the costly task offloading

problem (CTOP) in mobile edge computing networks with the

goal to achieve efficient joint optimization of energy consumption

and processing latency for mobile devices. Inspired by the success

of evolutionary multitasking in solving complex optimization

problems by leverage the experience of simple optimization

problems, we develop a novel multitasking framework whose

effectiveness is demonstrated in solving CTOP. In this framework,

auxiliary tasks are created for optimizing the local processing

overhead and the edge processing overhead of task offloading. On

this basis, we propose an effective multitask evolutionary

algorithm that includes segmented knowledge transfer and

auxiliary task update. Specially, source and extended decision

variables are considered as different knowledge to be utilized,

while the auxiliary tasks are allowed to be updated dynamically.

Related knowledge learned from cheap and simple auxiliary tasks

promote the evolutionary search for CTOP. The experimental

results verify the effectiveness of knowledge transfer. Compared

to other state-of-the-art multitasking algorithms as well as

single-tasking algorithms, the proposed algorithm shows

competitiveness in CTOP instances and can achieve better

comprehensive performance in terms of energy consumption and

processing latency.

This work was supported in part by the National Key R&D Program of

China under Grant 2021YFB1715700, in part by the National Natural Science

Foundation of China under Grant 62103046 and 72201266, in part by the

Fundamental Research Funds for the Central Universities under Grant

E1E40805X2 and the State Key Laboratory of Digital Manufacturing

Equipment and Technology under Grant DMETKF2021012. (Corresponding

author: Qunjian Chen and Shulin Lan.)

Chen Yang and Liehuang Zhu is with the School of Cyberspace Science and

Technology, Beijing Institute of Technology, Beijing 100081, China (e-mail:

yangchen666@bit.edu.cn; liehuangz@bit.edu.cn).

Qunjian Chen is with the School of Computer Science and Technology,

Beijing Institute of Technology, Beijing 100081, China (e-mail:

Chen-QJ@outlook.com).

Zexuan Zhu is with the College of Computer Science and Software

Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:

zhuzx@szu.edu.cn).

Zhi-An Huang is with the Center for Computer Science and Information

Technology, City University of Hong Kong Dongguan Research Institute,

Dongguan 523000, China (e-mail: huang.za@cityu.edu.cn).

Shulin Lan is with the School of Economics and Management, University of

Chinese Academy of Sciences, Beijing 100081, China (e-mail:

lanshulin@ucas.ac.cn).

Index Terms—Mobile edge computing, evolutionary

multitasking, task offloading, auxiliary task.

I. INTRODUCTION

ith the advances in mobile computing, Internet of Things

and 5G/6G networks [1], the convergence of mobile

technologies and artificial intelligence [2] facilitates mobile

devices to support many resource-intensive smart applications

like face recognition, image search and machine translation, etc.

Offloading computation-intensive tasks of smart applications to

a powerful edge server close to the resource-constrained mobile

devices can provide better application performance and user

experience. However, the rapid growth of mobile devices and

computational tasks highlights ineluctable challenges of task

offloading in terms of decision making and resource scheduling

[3].

A prominent approach for the task offloading problem is that

of evolutionary computation [4]. Song et al. [5] proposed an

improved multi-objective evolutionary algorithm with two

performance enhancing schemes, and considered the

task-precedence constraints for the task offloading problem in

mobile edge computing (MEC) networks. Pan et al. [6]

presented a multi-objective clustering evolutionary algorithm

for multi-workflow computation offloading, where an adaptive

clustering approach is designed to improve the crossover

operation. Although there have been many studies on task

offloading, most of them cannot cope with the increasing

computational cost and problem scale, and did not consider the

issue of scalability. In [7] and [8], the costly task offloading

problem (CTOP) is decomposed into multiple subproblems to

simplify the search process by solving each subproblem

separately. Although decomposition-based approaches can

improve the search performance for CTOP, the subproblems

are often solved independent and related knowledge learned is

not exploited for more efficient optimization.

Evolutionary multitasking (EMT) is an emerging

optimization paradigm in the field of evolutionary computation

[9]. Contrary to traditional single-tasking evolutionary

algorithms, EMT attempts to tackle multiple optimization

problems simultaneously with a single evolutionary solver.

Driving cross-domain transfer of knowledge between distinct

but probably related optimization problems, the augmented

implicit parallelism of population is achieved by the capacity of

multitasking [10]. Growing efforts have been made to develop

innovative EMT algorithms for performance gains in diverse

Evolutionary Multitasking for Costly Task

Offloading in Mobile Edge Computing Networks

Chen Yang, Member, IEEE, Qunjian Chen, Zexuan Zhu, Senior Member, IEEE, Zhi-An Huang,

Shulin Lan, Liehuang Zhu, Member, IEEE

W

mailto:yangchen666@bit.edu.cn
mailto:Chen-QJ@outlook.com
mailto:zhuzx@szu.edu.cn
mailto:huang.za@cityu.edu.cn
mailto:lanshulin@ucas.ac.cn

studies [11].

The most recent studies indicate that one of the special

characteristics of EMT is to take advantage of related and cheap

auxiliary tasks to accelerate the evolutionary search of the

costly optimization problem [12]-[14]. Compared to solving

complex problems directly, the useful information gained from

solving related and simple problems can help discover

promising solutions and save the total evaluation cost. Even

though existing EMT algorithms show strong competitiveness

in dealing with costly optimization problems, key issues still

exist to be investigated in terms of how to configure auxiliary

tasks in a multitasking environment and how to efficiently

exploit the useful information from the auxiliary tasks.

Therefore, this paper proposes a novel EMT framework whose

effectiveness is demonstrated in solving CTOP. Our method is

to transform CTOP into a multi-task optimization problem by

creating a set of highly correlated and computationally cheap

auxiliary tasks, which aims to capture favorable knowledge

from the auxiliary tasks to promote the search efficiency for

CTOP. The auxiliary tasks are not only used for enhancing the

capability of global search but also the capability of local

search of the multitasking solver. The proposed method is

expected to accelerate the convergence and improve the

solution quality for CTOP. To the best of our knowledge, this is

the first study to introduce EMT to solve CTOP. Specifically,

the contributions of this article are given as follows.

1) We build a system model for the costly task offloading

problems in MEC networks with the goal to achieve joint

optimization of energy consumption and processing latency, in

which task offloading decision, computing resource allocation

and transmission resource allocation are involved. In addition,

we create two types of auxiliary tasks with the aim of

minimizing the edge processing overhead and local processing

overhead of task offloading, respectively. The auxiliary tasks

possess different similarities to the CTOP and can contribute to

the efficient CTOP solving.

2) We develop a novel evolutionary multitasking framework,

in which the CTOP is transformed into a multitasking

optimization problem. The created auxiliary tasks are used to

improve the evolutionary search of the CTOP by sharing

favorable knowledge. The collaborative searching can greatly

increase the efficiency and scalability of optimization

algorithms in tackling the CTOP.

3) We propose an effective multitask evolutionary algorithm

with segmented knowledge transfer and auxiliary task update to

realize efficient CTOP solving using the above multitasking

framework. Experimental results show that the knowledge

transfer from auxiliary tasks to CTOP can accelerate the

convergence and improve the scalability of the algorithm.

The rest of this paper is organized as follows. Section II

provides a brief review of related work. We present the system

model and construct the auxiliary tasks in Section III. In

Section IV, the proposed method is introduced in detail. The

experimental results and analyses are presented in Section V.

Section VI concludes this paper and discuss future work.

II. BACKGROUND

A. Multitask Optimization

The goal of multitask optimization (MTO) [1] is to provide a

single optimizer that deals with multiple optimization tasks at

the same time. Without loss of generality, given an

optimization scenario in which K optimization tasks are to be

solved simultaneously. We assume that all optimization tasks

are minimization problems and may have some equality and/or

inequality constraints. The 𝑗-th optimization task is represented

as 𝑇𝑗 . Meanwhile, its search space is denoted as 𝑋𝑗 , the

corresponding objective function is defined as 𝐹𝑗: 𝑋𝑗 → ℝ .

With this setting, the MTO paradigm can be formulated as

follows:
{𝑥1, 𝑥2, … , 𝑥𝐾} = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝐾(𝑥𝐾)} (1)

where 𝑥𝑗 denotes a feasible solution in search space 𝑋𝑗. It is

noteworthy that the search space 𝑋1, 𝑋2, … , 𝑋𝐾 of optimization

task 𝑇1, 𝑇2, … , 𝑇𝐾 may be similar but often different. An

effective way is to construct a unified search space [2], in which

each of the component optimization tasks can be viewed as an

additional influence factor to facilitate the knowledge transfer

in a multitasking environment. In this paper, the CTOP is

considered as the target optimization problem, while the

auxiliary tasks are treated as other component optimization

problems, they are allowed to be processed simultaneously in a

multitasking environment.

B. Task offloading

The task offloading is of great interest in MEC networks,

which has been extensively studied in recent years. In general,

the execution latency is usually one of the most concerned

performance criteria. Dai et al. [15] proposed a coding-assisted

multi-objective evolutionary algorithm to optimize the service

delay and the network access cost, which considered the packet

encoding and network interface selection. Wang et al. [16]

constructed a distributed traffic management system, the

average system response time is minimized by scheduling the

message flow allocation among vehicle-based fog nodes. Ning

et al. [17] presented a three-layer vehicular fog computing

model to effectively offload network traffic, the integration of

cloudlet and fog nodes is used to reduce the response delay.

Chen et al. [18] considered the time-varying network dynamics

in computation offloading for a virtual MEC system. They

proposed two double DQN-based online learning algorithms to

deal with the stochastic computation offloading problem with

time-varying communication qualities and computation

resources.

In real-world situations, the energy consumption is another

important factor that must also be considered. In [19], Wang et

al. realized the joint optimization of computational speed,

transmit power and offloading ratio. They proposed a locally

optimal algorithm with the univariate search technique to

minimize the energy consumption and execution latency. An

optimization framework that enables task offloading from a

single mobile device to multiple edge devices is proposed in

[20], which aims to minimize execution latency and energy

consumption by coupling task allocation decisions and

frequency scaling. Moreover, there are some studies focusing

on the tradeoff between execution latency and energy

consumption. To this end, Zhang et al. [21] proposed an

energy-aware offloading scheme under the limited energy,

which jointly optimizes communication and computation

resource allocation in single and multicell MEC networks.

Wang et al. [22] proposed an integrated framework to minimize

the overall consumption of time and energy. The optimization

problem consists of computation offloading decision, physical

resource block allocation, and computation resource allocation.

However, most works ignored the impact of the explosive

growth in the number of mobile devices and computation tasks,

especially when dealing with large-scale or large computing

task offloading problems, which results in unaccepted user

experience and insufficient scalability. Although there are

some studies that decomposed the target problem into several

subproblems, the subproblems are only optimized individually

rather than helping the solving of the target problem through

knowledge sharing. Therefore, we conceive a novel task

offloading mechanism that leverages the characteristics of

evolutionary multitasking to take advantage of auxiliary tasks

to accelerate the search for the CTOP.

C. Evolutionary Multitasking

One trend in the field of optimization has been to effectively

multitask. Recently, the concept of evolutionary multitasking

indicates that the genetic material evolved for one problem may

be effective for another as well. In [1], Gupta et al. proposed a

multifactorial evolutionary algorithm (MFEA) that first

demonstrated the superiority of evolutionary multitasking.

They drew on the theory of multifactorial inheritance, where

the genetic and cultural transmission enables MEFA to conduct

a cross-domain search. As a rising research perspective, the

effectiveness of MFEA has been verified in discrete,

continuous, single-objective, as well as multi-objective

optimization with some impressive results [3].

There are many researches concentrated on the knowledge

transfer in the multitasking environment. Feng et al. [23]

explored the implicit knowledge transfer under particle swarm

optimization and differential evolution. Bail et al. [24]

presented a linearized domain adaptation approach to alleviate

the issue of negative knowledge transfer. Liang et al. [25]

proposed a two-stage adaptive knowledge transfer algorithm

based on population distribution, the individual search

strategies are adjusted in different stages of evolution to

improve convergence performance. In [26], the mapping matrix

generated by subspace learning is introduced to transform the

search space of the population, thereby reducing the negative

knowledge transfer in the process of evolution. However, the

component optimization problems in multitasking environment

may have different computational complexity. When the

resources are limited, more resources should be allocated to

hard-to-handle component optimization problems. To achieve

adaptive allocation of computational resources, Gong et al. [27]

presented an online dynamic resource allocation strategy based

on the evaluation of computational complexities of component

optimization problems. For reducing negative transfer due to

the increase in the total number of component optimization

tasks, Xu et al. [28] proposed an adaptive EMT framework to

adjust knowledge transfer frequency, knowledge source

selection, and knowledge transfer intensity.

In particular, in the presence of correlation in component

optimization problems, genetic transfer across domains usually

leads to accelerated convergence of high-cost problems due to

the rapid exploration of the search space by low-cost problems.

Ding et al. [29] proposed a multitasking evolutionary

optimization framework that uses decision variable translation

and decision variable shuffling strategies to transfer knowledge

from computationally inexpensive problems to help solve

costly problems. Similarly, Zhang et al. [30] developed a

surrogate-assisted multitasking method, which approximates

individual fitness by building computationally inexpensive

models to help reduce the number of function evaluations.

If the optimization scenario does not contain a simple

problem, then it can be artificially constructed. To solve

complex optimization problems, Ma et al. [13] constructed

strongly related meme helper-tasks based on the problem

structure or decision variable grouping, aiming to escape local

optima and increase population diversity. Zhang et al [12].

created a band of small data proxies for the main task, the

knowledge extraction and reuse from small data tasks lead to

rapidly optimization of the large dataset. Qiao et al. [33]

analyzed the similarity of the constrained Pareto front and the

unconstrained Pareto front. The constrained multi-objective

problem with dynamic constraint boundary is modeled as an

auxiliary task solved simultaneously with the source problem

using an optimization multitasking framework. Chen et al. [34]

proposed an efficient computation resource allocation strategy

for minions generated using subsampled small-data tasks, in

which more resources are allocated for tasks with high

correlation measures based on Bayes’ rule.

Evolutionary multitasking provides a promising means to

deal with the increasingly complex and costly optimization

problems. However, many existing EMT algorithms cannot

fully exploit the useful information in the candidate solutions

corresponding to auxiliary tasks, leading to an implicit waste of

resources. Our proposed algorithm includes a segmented

knowledge transfer strategy, in which both source and extended

decision variables (from promising candidate individuals in

auxiliary tasks) in the unified search space can contribute

different knowledge to significantly facilitate the search of

target problem. Moreover, in many EMT algorithms, they tend

to pre-place all the auxiliary tasks in the multitasking

environment and transfer knowledge from different auxiliary

tasks simultaneously. This may result in potential transfer

conflicts (leading to slow convergence speed or negative

transfer) in the target problem. Our proposed algorithm also

includes an auxiliary task update mechanism, which allows the

dynamic generation of different auxiliary tasks to maintain

population diversity and generate new knowledge during the

evolutionary process. There are two simultaneous auxiliary

tasks in a multitasking environment, each pair exploiting

different but complementary areas of the search space. This

mechanism can reduce the probability of transfer conflicts and

realize flexible and efficient local optimization.

III. SYSTEM MODEL AND AUXILIARY TASKS

A. System Model

A typical 5G heterogeneous MEC network is composed of

one macro base station (MBS) and 𝑁 small base stations

(SBSs), as shown in Fig. 1. We consider that the MBS is

equipped with an MEC server and has the powerful ability to

process multiple computationally intensive tasks of smart

applications concurrently. The MEC server provides

computing and storage services for resource-constrained

mobile users to execute their smart applications. For each SBS,

mobile devices can initiate the request over the wireless link.

The SBSs are overlaid by the MBS and connected to the MBS

via wired link [10]. To support heterogeneous devices well,

software-defined networking (SDN) [31] is introduced as an

orchestrator that separates control functions from the data

functions. These heterogeneous devices follow the scheduling

of the SDN controller to transmit and process information.

For easy reference, Table I summarizes the key symbols used

in this section.

We assume that there exits 𝑁 regions of mobile devices 𝑀 =
{𝑀1, 𝑀2, … , 𝑀𝑁} within the network. Mobile devices in each

region are served by an SBS. In this network, the mobile device

𝑖 in region 𝑗 has a computation-intensive and

non-decomposable task 𝑇𝑖,𝑗 = {𝑐𝑖,𝑗 , 𝑑𝑖,𝑗 , 𝑡𝑖,𝑗
𝑚𝑎𝑥} needs to be

completed. Here 𝑐𝑖,𝑗 is the total number of CPU cycles required

to accomplish the computation task 𝑇𝑖,𝑗, 𝑑𝑖,𝑗 denotes the input

data size of computation task 𝑇𝑖,𝑗, 𝑡𝑖,𝑗
𝑚𝑎𝑥 represents the latency

constraint of completing the computation task 𝑇𝑖,𝑗 . When

processing a computation task, the mobile device can offload it

to the MEC server with the consideration of time and energy

consumption for the purpose of performance improvement.

That means that computation tasks can be locally processed on

a mobile device or on the MBS via task offloading. We define

𝑂𝑖,𝑗 ∈ {0,1} to indicate the computation task processing mode,

in which 𝑂𝑖,𝑗 = 1 represents the local processing and 𝑂𝑖,𝑗 = 0

for the edge processing.

1) Local processing

We assume that mobile devices have different computation

capability. The CPU frequency of mobile devices is denoted as

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙, which is elastic that can be scheduled under the given

constraints. In such a setting, we can obtain the local processing

time 𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 as follows.

𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 =

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 (2)

The corresponding energy consumption of a mobile device

can be calculated as

𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 = 𝑧(𝐹𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗 (3)

where 𝑧 is an energy coefficient depending on the chip

architecture [21].

There is a weight factor 𝑤𝑖,𝑗 is used to reflect the tradeoff

between processing time and energy consumption, which

allows different weights are selected to meet the demands of

mobile users in decision making. The overhead of the

computation task processed locally can be expressed as

𝑄𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 = 𝑤𝑖,𝑗𝑡𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙 + (1 − 𝑤𝑖,𝑗)𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 (4)

Notably, the formulations in (2) and (3) allow the CPU

frequency of mobile devices to exert influences on both

processing time and energy consumption. Therefore, we

consider to schedule the CPU frequency of mobile devices to

achieve optimal task processing performance, this can be

supported by using dynamic voltage and frequency scaling

techniques [19].

2) Edge processing

We consider that each mobile user can initiate a request to

the MEC server to offload the computationally intensive tasks,

when the local resources of a mobile device cannot satisfy the

need of the mobile user. The input data can be uploaded to the

MEC server via the SBS, and the upload expenditure between

SBS and MEC sever is ignored [22]. The uplink rate 𝑟𝑖,𝑗

between mobile device and the SBS is calculated as

𝑟𝑖,𝑗 = 𝐵𝑖,𝑗𝑙𝑜𝑔2(1 +
𝑃𝑖,𝑗𝐻𝑖,𝑗

∑ ∑ 𝑃𝑚,𝑛𝐻𝑚,𝑛+
𝑀𝑛
𝑚=1

𝑁
𝑛=1,𝑛≠𝑗 𝜎2

) (5)

where 𝐵𝑖,𝑗 is the uplink bandwidth and 𝑃𝑖,𝑗 is the transmission

power, respectively. Moreover, 𝐻𝑖,𝑗 denotes the channel gain

and 𝜎2 is the noise power. Note that the data transmission of a

mobile device often suffers from interferences caused by other

mobile devices in nearby regions.

 Let 𝐹𝑖,𝑗
𝑀𝐸𝐶 be the CPU frequency of MEC server. We assume

that the MEC server will process the computation task with

maximum CPU frequency. Then the total latency of edge

processing involves data transmission time and edge computing

time can be given by

𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

=
𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶 (6)

Meanwhile, the corresponding energy consumption of

mobile device can be calculated as

𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

=
𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗 (7)

TABLE I

KEY SYMBOLS AND DEFINITIONS

Symbol Definition

𝑇𝑖,𝑗 the computation task

𝑐𝑖,𝑗 the total number of CPU cycles required to accomplish the

computation task

𝑑𝑖,𝑗 the input data size of computation task

𝑡𝑖,𝑗
𝑚𝑎𝑥 the latency constraint of completing the computation task

𝑂𝑖,𝑗 process computation task locally or at the edge

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the CPU frequency of mobile device

𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the local processing time

𝑧 the energy coefficient depending on the chip architecture

𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the local energy consumption

𝑤𝑖,𝑗 the weight factor

𝑄𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙

 the overhead of computation task processed locally

𝐵𝑖,𝑗 the uplink bandwidth

𝑃𝑖,𝑗 the transmission power

𝐻𝑖,𝑗 the channel gain

𝜎2 the noise power

𝑟𝑖,𝑗 the uplink rate

𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

 the total latency of edge processing

𝐹𝑖,𝑗
𝑀𝐸𝐶 the CPU frequency of MEC server

𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

 the energy consumption of data transmission

𝑄𝑖,𝑗
𝑒𝑑𝑔𝑒

 the overhead of the computation task processed at edge

𝑒𝑖,𝑗
𝑟𝑒𝑠 the residual energy of mobile device

𝐹𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙 the maximum CPU frequency of mobile device

𝑃𝑚𝑎𝑥 the maximum transmission power of mobile device

Similarly, the overhead of the computation task processed at

edge can be expressed as

𝑄𝑖,𝑗
𝑒𝑑𝑔𝑒

= 𝑤𝑖,𝑗𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

+ (1 − 𝑤𝑖,𝑗)𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

 (8)

For simplicity, the consumption of time and energy of the

mobile devices receiving the results from MEC server is

ignored [31], because the size of returned results is usually

much smaller than the input data size. In addition, the

formulations in (6) and (7) indicate the transmission power 𝑃𝑖,𝑗

has an impact on both time and energy consumption as well. By

adjusting the transmission power, energy saving or delay

reduction can be achieved.

3) Problem formulation

As previously described, we formulate the system model as

an CTOP that optimizes the tradeoff between processing time

of computation tasks and energy consumption of mobile

devices in an MEC network. The total cost minimization

problem with regard to the task offloading is shown as follows.

𝐶𝑇𝑂𝑃:
𝑚𝑖𝑛

𝑂, 𝐹, 𝑃
∑ ∑ {𝑂𝑖,𝑗 [𝑤𝑖,𝑗 (

𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶)

𝑁

𝑗=1

𝑀𝑗

𝑖=1

+ (1 − 𝑤𝑖,𝑗)
𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗]}

+ ∑ ∑ {(1 − 𝑂𝑖,𝑗) [𝑤𝑖,𝑗

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙

𝑁

𝑗=1

𝑀𝑗

𝑖=1

+ (1 − 𝑤𝑖,𝑗)𝑧(𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗]} (9)

 s. t.

𝐶1: 𝑂𝑖,𝑗（
𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶 ） + (1 − 𝑂𝑖,𝑗)

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 ≤ 𝑡𝑖,𝑗

𝑚𝑎𝑥 (9a)

𝐶2: 𝑂𝑖,𝑗

𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗 + (1 − 𝑂𝑖,𝑗) 𝑧(𝐹𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗 ≤ 𝑒𝑖,𝑗
𝑟𝑒𝑠 (9b)

𝐶3: 0 < 𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 ≤ 𝐹𝑚𝑎𝑥

𝑙𝑜𝑐𝑎𝑙 (9c)

𝐶4: 0 < 𝑃𝑖,𝑗 ≤ 𝑃𝑚𝑎𝑥 (9d)

𝐶5: 𝑂𝑖,𝑗 ∈ {0,1} (9e)

where 𝐹𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙 and 𝑃𝑚𝑎𝑥 denote the maximum CPU frequency

and maximum transmission power of mobile devices,

respectively. The constraint 𝐶1 guarantees the total processing

time of a computation task cannot exceed the maximum

acceptable latency; constraint 𝐶2 indicates that the total energy

consumption of a mobile device is less than its residual energy;

constraints 𝐶3 and 𝐶4 restricts the CPU frequency and

transmission power of mobile devices; 𝐶5 reflects that there are

only two processing modes for computation tasks.

The CTOP formulated in this subsection is non-convex and

NP-hard. The evolutionary algorithm, is a good choice to solve

the problem. In consideration of the challenge in search

complexity, we conceive to construct a set of related and

easy-to-process auxiliary tasks to help solve the CTOP through

evolutionary multitasking.

B. Auxiliary Tasks

For the formulated CTOP, it is hard to obtain a high-quality

solution directly. This suggests learning from related and cheap

auxiliary tasks to reduce the difficulty of handling expensive

and complex target problems. Currently, it is still an open issue

about how to construct the auxiliary tasks. In [14], the auxiliary

task has the same objective function as the constrained

multi-objective problem, but with different constraints. The

paper [12] used small data proxies to the main target task as the

auxiliary tasks to quickly optimize for the target large dataset.

In article [13], the strongly related meme helper-tasks are

constructed through a multiobjectivization of the original task.

Fig. 1. The system model for task offloading.

Small base station

Powerful MEC server

Computing

Storage

Macro base station

mobile devices

Region 1

Region 2 Region N

SDN

Controller

Small base station Small base station

Task

offloading

Results

Results

Task

offloading

Resource limited

Resource limited mobile devices

Task from the devices

Resource limited mobile devices

In this subsection, we attempt to create auxiliary tasks to

perform quick search, which aims to improve the search

efficiency for the CTOP through evolutionary multitasking. To

this end, the auxiliary tasks are constructed to be highly

correlated to the target problem in order to exploit the potential

synergy between them with regard to the fitness landscape. In

multitasking environments, auxiliary tasks are expected to

provide additional favorable influences to rapidly advance the

evolutionary search of the target problem at a relatively

inexpensive computational cost.

The formulated CTOP includes the searching of task

offloading decision variables, computing resource allocation

variables, and transmission resource allocation variables.

Moreover, it can be seen that the objective function of CTOP

consists of two parts. The former component is the overhead of

edge processing while the latter is the overhead of the local

processing. Note that the task offloading decision can be

potentially obtained through the analysis of edge processing

overhead and local processing overhead. Therefore, we

constructed two types of auxiliary tasks that are formally

subproblems of the target problem. The motivation for

constructing them is to find promising resource scheduling

schemes for the target problem.

To reduce the local processing overhead of computation

tasks, the first type of auxiliary tasks that finds a scheduling

scheme for the CPU frequency of mobile devices, with the goal

of minimizing the time and energy consumption of mobile

devices, can be formed as

𝐶𝑇𝑂𝑃 − 𝐹:
𝑚𝑖𝑛

𝐹
∑[𝑤𝑙,𝑘

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 + (1 − 𝑤𝑙,𝑘)𝑧(𝐹𝑙,𝑘

𝑙𝑜𝑐𝑎𝑙)
2

𝑐𝑙,𝑘]

𝑀𝑘
′

𝑙=1

 (10)

 s. t.
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′ ≤ 𝑀𝑘 (10a)

𝐶2:
𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 ≤ 𝑡𝑙,𝑘

𝑚𝑎𝑥 (10b)

𝐶3: 𝑧(𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙)2𝑐𝑙,𝑘 ≤ 𝑒𝑙,𝑘

𝑟𝑒𝑠 (10c)

𝐶4: 0 < 𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 ≤ 𝐹𝑚𝑎𝑥

𝑙𝑜𝑐𝑎𝑙 (10d)

where 𝑘 specifies the search region, 𝑀𝑘
′ is used to control the

number of mobile devices. In a more general case, the CTOP-F

can be further simplified depending on the complexity and

scale of the target problem, especially when a large number of

mobile devices are connected to the MEC network. If a good

solution is found for the CTOP-F, then it is likely to be

beneficial for the target problem as well, since the CTOP-F is

given a fitness landscape that is positively correlated with the

target problem. Moreover, the CTOP-F is regarded as a simple

optimization problem that requires significantly lower

computation cost than the target problem. In a multitasking

environment, the CTOP-F is expected to obtain promising

solutions to assist the efficient optimization of the

computationally expensive target problem, through knowledge

transfer from CTOP-F to the target problem.

Another type of auxiliary tasks with the goal to minimize the

edge processing overhead of computation tasks by scheduling

the transmission power of mobile devices, can be represented

as

𝐶𝑇𝑂𝑃 − 𝑃:
𝑚𝑖𝑛

𝑃
∑[𝑤𝑙,𝑘 (

𝑑𝑙,𝑘

𝑟𝑙,𝑘
+

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑀𝐸𝐶)

𝑀𝑘
′

𝑙=1

+ (1 − 𝑤𝑙,𝑘)
𝑑𝑙,𝑘

𝑟𝑙,𝑘
𝑃𝑙,𝑘]

 (11)

 s. t.
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′ ≤ 𝑀𝑘 (11a)

𝐶2:
𝑑𝑙,𝑘

𝑟𝑙,𝑘
+

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑀𝐸𝐶 ≤ 𝑡𝑙,𝑘

𝑚𝑎𝑥 (11b)

𝐶3:
𝑑𝑙,𝑘

𝑟𝑙,𝑘
𝑃𝑙,𝑘 ≤ 𝑒𝑙,𝑘

𝑟𝑒𝑠 (11c)

𝐶4: 0 < 𝑃𝑙,𝑘 ≤ 𝑃𝑚𝑎𝑥 (11d)

Correspondingly, the solving of CTOP-P providing

knowledge related to edge processing for the target problem. It

is worth noting that the relationship between auxiliary tasks and

target problem. In a single multitasking setting, the CTOP-F

and the CTOP-P have similar fitness landscapes to the target

problem, respectively. Meanwhile, the CTOP-F and the

CTOP-P complement each other. For the same purpose but

with different motivations, the auxiliary tasks can guide the

solver to travel different areas of search space. The knowledge

transfer can be carried out to promote the efficient search for

the target problem. Most importantly, the insights offered by

optimizing the local processing overhead and edge processing

overhead help to make a task offloading decision. The CTOP-O

can be defined based on the CTOP-F and CTOP-P as follows.

𝐶𝑇𝑂𝑃 − 𝑂:
𝑚𝑖𝑛

𝑂
∑[𝑂𝑙,𝑘𝑄𝑙,𝑘

𝑒𝑑𝑔𝑒
+ (1 − 𝑂𝑙,𝑘)𝑄𝑙,𝑘

𝑙𝑜𝑐𝑎𝑙]

𝑀𝑘
′

𝑙=1

 (12)

s. t.
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′ ≤ 𝑀𝑘 (12a)

𝐶2: 𝑂𝑖,𝑗 ∈ {0,1} (12b)

Making a task offloading decision needs to analyze the

overheads of local processing and edge processing. In general,

mobile users may prefer to choose the way with less overhead

to process their computation tasks. Therefore, the searching of

task offloading decision variables can be potentially obtained

through CTOP-F and CTOP-P. The 𝑄𝑙,𝑘
𝑒𝑑𝑔𝑒

 denotes the edge

processing overhead obtain by CTOP-P and the 𝑄𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 denotes

the local processing overhead obtained by CTOP-F. If 𝑄𝑙,𝑘
𝑒𝑑𝑔𝑒

<

𝑄𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙, then 𝑂𝑙,𝑘 = 1, otherwise 𝑂𝑙,𝑘 = 0. The task offloading

decision obtained by CTOP-O is helpful for the target problem

to decide whether the computation task is to be offloaded or

processed locally.

As described above, we expect that the introduction of

related and cheap auxiliary tasks in MTO will result in good

scalability. It is critical to transfer knowledge from auxiliary

tasks to the target problem to promote its efficient search.

Because auxiliary tasks have fewer dimensions than the target

problem, they consume less solution evaluation resource than

the target problem. When the searching for auxiliary tasks can

provide useful information to the target problem, i.e., the

transfer of knowledge is effective, the search process can be

considered cheaper comparing to directly addressing such

costly target problem.

IV. THE PROPOSED METHOD

A. Multitasking Framework for CTOP

The MTO framework of the proposed method is shown in

Fig. 2. Here, the formulated CTOP is regarded as the target

problem in the multitask evolution setting, the ultimate goal of

a multitasking solver is to find the optimal solution for the

target problem. The auxiliary tasks proposed in Section III are

constructed to help improve the search of the target problem,

that is reflected on using simple and related auxiliary tasks to

efficiently assist costly target problems for cheaper and faster

evolutionary iteration, thereby reducing computational cost and

achieving convergence speedup. In particular, the evolved

auxiliary tasks have complementary evolutionary trials to each

other. The presence of different but complementary influencing

factors may shape a favorable search guidance for the evolution

of the target problem.

Noted that the component tasks in the multitask setting have

different search spaces [1]. It is an effective means to

encompass each of the individual search spaces for different

component tasks into a unified search space. In other words, the

candidate solutions corresponding to different component tasks

are encoded into a vector with the same dimensionality. In such

a condition, a shared pool of genetic material can be used to

cover the genetic building blocks corresponding to different

component tasks, thus facilitating the discovery and utilization

of available genetic material in a seamless way. Furthermore,

based on the consideration of commonalities and differences

between the auxiliary tasks and the target problem, we divide

the vectors encoded in a unified representation corresponding

to the auxiliary tasks into source decision variables and

extended decision variables. The source decision variables

correspond to the solution of the auxiliary task, while the

extended decision variables correspond to the additional part.

In a multitasking environment, the constructed auxiliary

tasks influence the search trajectory of target problem mainly

through knowledge transfer. For effective multitasking, it is

crucial to look for useful evolutionary information. Many

related approaches discussed individual-based knowledge

transfer and inter-task crossover knowledge transfer. In this

framework, one of our main contributions is the proposal of a

novel segmented transfer strategy which facilitates the

utilization of useful evolutionary information in unified search

space from auxiliary tasks. If the knowledge transfer is

effective, the source decision variables seem to be better suited

to enhance local search and accelerate convergence, while the

extended decision variables focus on maintaining diversity and

improving global search.

Although the introduction of auxiliary tasks helps to reduce

the difficulty of evolutionary search, they also call for

additional computing resources. Different from previous

studies that tended to treat each component task equally and

allocate the same level of computing resources to them, we

propose to generate different auxiliary tasks at different

evolutionary stages. Due to the simple and low-dimension

nature of the auxiliary tasks, only a small number of computing

resources are needed. To use computational resources

reasonably and improve the flexibility of multitasking, the

allocation of resources is achieved through the update of

auxiliary tasks. When an auxiliary task cannot provide more

knowledge for evolutionary search of CTOP, a new auxiliary

task is generated. By dynamically updating auxiliary tasks and

reasonably transferring knowledge from them, the efficiency of

multitasking can be significantly improved.

Considering possible transfer conflicts between auxiliary

tasks, where positive and negative transfer may simultaneously

exist. Rational filtering for them during the transfer process can

retain useful information that facilitates evolutionary search. In

addition, adaptive updating of auxiliary tasks in a multitasking

environment also can effectively reduce the incidence of

transfer conflicts.

B. Multitask Evolutionary Task Offloading Algorithm

In this subsection, we intend to solve the CTOP by using the

aforementioned EMT framework. We first transform the CTOP

into a multi-task optimization problem by introducing the

constructed auxiliary tasks, and then design an effective EMT

Fig. 2. The illustration of solving CTOP with MTO.

Optimal local processing

through

CPU frequency scheduling

Optimal edge processing

through

transmission power scheduling

Task offloading decision Costly

Task Offloading Problem

Multitasking

Solver

Auxiliary tasks：

Target problem：

Auxiliary

Tasks Update

Segmented

Knowledge Transfer

Unified

Search Space

Multitask Optimization Problem:

EA

algorithm to search for solutions. As shown in Algorithm 1, the

proposed algorithm, namely multitask evolutionary task

offloading algorithm (METOA), is described in detail. At the

beginning of the iteration, a target population is initialized for

the CTOP, in which each candidate individual corresponds to a

solution of CTOP in the unified search space. Then, there are

two different auxiliary tasks, which are generated according to

the CTOP-F and the CTOP-P described in Section III. In

METOA, each type of auxiliary tasks is offered an auxiliary

population that works in parallel in the iteration process. To

balance the exploration and exploitation of auxiliary

populations and target population, as well as to rationalize the

complementarity between auxiliary populations, each type of

auxiliary task generates only one component task at a time to

participate in the evolutionary in multitasking environment.

During the procedure of evolution, the candidate individuals

in the auxiliary populations perform explicit knowledge

transfer across tasks by Algorithm 2. The segmented

knowledge transfer screen useful evolutionary information

from different auxiliary tasks, with the aim of increasing the

diversity of the target population and improving the fitness of

candidate individuals in target population. In the offspring

production cycle, the target population is uniformly divided

into two subpopulations, then each of which produces offspring

with an auxiliary population based on the standard evolutionary

operators. The assortative mating and vertical cultural

transmission [1] implicitly conduct genetic transfer across

domains, where genetic material created for one component

task can be copied into chromosomes associated with other

component tasks. After offspring individuals are evaluated,

elite candidate individuals are selected to form the next

generation of the populations. Finally, considering that the

auxiliary tasks are easily solved, the corresponding populations

converge and diverge quickly, sometimes with stagnation.

Therefore, the auxiliary tasks are updated by Algorithm 3,

which dynamically generates auxiliary tasks that lead to

different search biases in a multitasking environment, while

rationally allocating computational resources to different

auxiliary tasks.

Fig. 3 shows an example of proposed METOA with

segmented knowledge transfer and auxiliary tasks update.

Although the proposed algorithm is similar to the

co-evolutionary algorithm in terms of the utilization of multiple

populations, there are several essential differences between

them. In co-evolutionary algorithm, subproblems are solved

independently in subpopulations and the complete solution is

obtained by combining representative individuals of each

subpopulation. In contrast, the METOA is based on the

framework of evolutionary multitasking, where the individuals

of auxiliary tasks help the target problem to evolve search

through knowledge transfer. The source and extended decision

variables are available as different knowledge and the auxiliary

tasks can be updated according to the search status.

C. Segmented knowledge transfer

The knowledge transfer is an important issue in evolutionary

multitasking and a promising way to improve the problem

solving for the CTOP. Unlike previous works that focused on

individual-based knowledge transfer and inter-task crossover

knowledge transfer, the proposed algorithm allows for

Algorithm 1: Pseudocode of METOA

Input:

Total population size - 𝑁𝑃

Target problem CTOP – 𝑇𝐶

Output:

The optimized solution of CTOP

1. Set 𝑡 = 1

2. Initialize target population 𝐶𝑡 for 𝑇𝐶 of size 𝑁𝑃/2

3. Evaluate candidate individuals in 𝐶𝑡

4. Generate auxiliary tasks 𝑇𝐴 = {𝑇𝐴𝑗}𝑗=1
2 based on

CTOP-F and CTOP-P in Eq. (10-11), respectively

5. Initialize auxiliary populations 𝑃𝑡 = {𝑃𝑗
𝑡}𝑗=1

2 for 𝑇𝐴 of

size 𝑁𝑃/4, respectively

6. Evaluate candidate individuals in 𝑃𝑡

7. While stopping criteria are not satisfied do

8. Segmented knowledge transfer via Algorithm 2

9. Uniformly divide the 𝐶𝑡 into {𝐶𝑗
𝑡}𝑗=1

2

10. For 𝑗 = 1 to 2 do

11. Perform assortative mating on 𝐶𝑗
𝑡 ∪ 𝑃𝑗

𝑡 to generate

offspring 𝐶𝑃𝑗
𝑡

12. Determine the imitation task of offspring in 𝐶𝑃𝑗
𝑡 based

on vertical cultural transmission

13. Evaluate the candidate individuals in 𝐶𝑃𝑗
𝑡

14. End for

15. Carry out elitist selection to form 𝐶𝑡+1 , 𝑃𝑡+1 =
{𝑃𝑗

𝑡+1}𝑗=1
2

16. Update auxiliary tasks via Algorithm 3

17. Set 𝑡 = 𝑡 + 1

18. End while

Fig. 3. The example of proposed METOA with segmented knowledge transfer and auxiliary tasks update.

Source decision variables Source decision variables

Mutation vector

Extended decision variables Extended decision variables

Solving auxiliary

task CTOP-F

Solving target

problem CTOP

Segmented knowledge

transfer

Solving auxiliary

task CTOP-P

Auxiliary task

update
Auxiliary task

update

knowledge transfer in segments. In the unified search space, the

candidate individuals corresponding to the auxiliary tasks

transfer knowledge to candidate individuals in target

population based on source and extended decision variables.

As shown in Algorithm 2, each auxiliary population

randomly provides a candidate individual for optimizing the

selected candidate individual in target population. Noted that

the decision variables in 𝑝𝑗 include source decision variables

𝑝𝑗
𝑠 and extended decision variables 𝑝𝑗

𝑒 . For source decision

variables of each candidate individual, they simultaneously

replace the corresponding decision variables of the selected

candidate individual 𝑐 to generate an intermediate individual
𝑐(𝑝𝑗

𝑠) . If positive transfer has occurred, this intermediate

individual is retained in the target population. In addition, the

extended decision variables need to be screened to facilitate

positive transfer. For the purpose of increasing the population

diversity, the extended decision variables are first extracted to

generate a mutation vector 𝑉𝑒, as shown below.

𝑉𝑒 = 𝑐𝑒 + 𝛾 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑝2
𝑒 − 𝑝1

𝑒) (13)

where 𝛾 is the scaling factor, 𝑝1
𝑒 and 𝑝2

𝑒 are the extended

decision variables of candidate individuals 𝑝1 and 𝑝2 ,

respectively. For each element in 𝑉𝑒, the ones that are verified

to be beneficial will be transferred to the selected candidate

individual 𝑐 . To avoid high function evaluation cost, the

Algorithm 2 performs the search for only one candidate

individual in each iteration.

Since auxiliary tasks and target problem have locally similar

fitness landscapes, such that the transfer of source decision

variables would be likely to perform fast local search for target

problem. Meanwhile, the transfer of extended decision

variables from promising candidate individuals in auxiliary

tasks facilitates the search of the target problem.

D. Auxiliary tasks update

The proposed algorithm allows the dynamic exploitation of

auxiliary tasks to facilitate the search of the target problem.

Since auxiliary tasks are easily handled, the auxiliary

populations may converge or stagnate after several generations

of evolution. In such a condition, it is difficult for the target

population to obtain useful evolutionary information from the

auxiliary populations, while unnecessary evaluation resources

may be wasted on auxiliary tasks that have already diverged.

Therefore, the generation of different auxiliary tasks in the

evolutionary process makes full use of limited evaluation

resources to facilitate cross-domain search. As shown in

Algorithm 3, the degree of change in auxiliary populations is

used to determine whether they need to be updated. During the

evolutionary iteration, auxiliary populations are constantly

changing and eventually stabilize. Based on the fitness of

population members, the change in the auxiliary population can

be observed according to the following equation.

𝑅𝑀𝑆𝐸(𝑃𝑗
𝑡, 𝑃𝑗

𝑡+1) = √
1

𝑁𝑃/4
∑ (𝑓𝑖𝑡(𝑝𝑖)𝑗

𝑡 − 𝑓𝑖𝑡(𝑝𝑖)𝑗
𝑡+1)2𝑁𝑃/4

𝑖=1

(14)

The change between 𝑃𝑗
𝑡 and 𝑃𝑗

𝑡+1 is measured by the

individual fitness 𝑓𝑖𝑡(𝑝𝑖)𝑗
𝑡 and 𝑓𝑖𝑡(𝑝𝑖)𝑗

𝑡+1. If the 𝜎𝑗 is less than

a given convergence coefficient 𝛽, then new auxiliary tasks

will be generated and given evaluation resources to participate

in evolution. The purpose of auxiliary task update is to provide

diverse knowledge of local optimization to guide the

evolutionary search of the target problem. The new auxiliary

task is generated by updating the parameters 𝑘 and 𝑀𝑘
′ in

CTOP-F or CTOP. Each update of the auxiliary task indicates

that the population of candidate individuals will shift to search

for promising solutions for 𝑀𝑘
′ mobile devices in region 𝑘 ,

thus achieving quick local optimization.

V. EXPERIMENT STUDIES

A. Experimental Setup

The experiment studies were conducted based on the system

model presented in Section III. We consider a simulated MEC

Algorithm 2: Segmented knowledge transfer

Input:

Target population - 𝐶𝑡

Auxiliary populations - 𝑃𝑡

Scaling factor - 𝛾

Output:

The improved candidate individual of target population

1. Randomly select candidate individuals 𝑝1, 𝑝2 from

𝑃𝑡 = {𝑃𝑗
𝑡}𝑗=1

2 , respectively

2. Randomly select a candidate individual 𝑐 from 𝐶𝑡

3. For 𝑗 = 1 to 2 do

4. Transfer the 𝑝𝑗
𝑠 to the candidate individual 𝑐 to obtain

𝑐(𝑝𝑗
𝑠)

5. If 𝑐(𝑝𝑗
𝑠) better than 𝑐 then

6. 𝑐(𝑝𝑗
𝑠) → 𝑐

7. End if

8. End for

9. Extract extended decision variables 𝑝1
𝑒 , 𝑝2

𝑒 to generate

mutation vector 𝑉𝑒 based on Eq. (13)

10. For each 𝑉𝑖
𝑒 in 𝑉𝑒 do

11. Transfer the 𝑉𝑖
𝑒 to the candidate individual 𝑐 to

obtain 𝑐(𝑉𝑖
𝑒)

12. If 𝑐(𝑉𝑖
𝑒) better than 𝑐 then

13. 𝑐(𝑉𝑖
𝑒) → 𝑐

14. End if

15. End for

Algorithm 3: Auxiliary task update

Input:

Auxiliary populations at generation 𝑡 - 𝑃𝑡

Auxiliary populations at generation 𝑡 + 1 - 𝑃𝑡+1

Convergence coefficient – 𝛽

Output:

The updated auxiliary tasks

1. For 𝑗 = 1 to 2 do

2. Compute 𝜎𝑗 = 𝑅𝑆𝑀𝐸(𝑃𝑗
𝑡, 𝑃𝑗

𝑡+1) based on Eq. (14)

3. If (𝜎𝑗 ≤ 𝛽) then

4. Generate new auxiliary task 𝑇𝐴𝑗 based on Eq. (10-11)

5. Initialize auxiliary population 𝑃𝑗
𝑡 for 𝑇𝐴𝑗

6. Evaluate candidate individuals in 𝑃𝑗
𝑡

7. End if
8. End for

network for task offloading, where 𝑁 SBSs are randomly

distributed in a 500 m ∗ 500 m area. There is an MBS located in

the center of the MEC network, which is equipped with a MEC

server. In the default settings, the number of SBSs is set to 10

and the computation frequency of the MEC server is 4 GHz.

There are 100 mobile devices uniformly scattered over the

MEC network, each mobile device has a computation task to be

processed. The data size and the number of required CPU

cycles of the computation task are randomly generated in the

range of [400, 1200] KB and [0.1 ∗ 109, 1 ∗ 109] cycles,

respectively. The maximum CPU frequency and the maximum

transmission power of mobile devices are 1 GHz and 23 dBm.

respectively. The noise power is set to -100 dBm and the uplink

bandwidth is 2 MHz. Unless otherwise indicated, when

discussing the effect of a parameter on the performance of the

system model, the value of this parameter is variable while all

other parameters are set as default values.

To demonstrate the effectiveness of the proposed algorithm

for solving the CTOP, we compare the METOA with several

state-of-the-art multitask algorithms as well as the single-task

algorithms. The well-known multitask algorithms, that are,

MFEA [1] and MFEA-II [2], are considered as the baseline

algorithms, for using auxiliary tasks to solve CTOP. To verify

the benefits of introducing auxiliary task for optimization, we

further implemented two other variants of MFEA, namely are

MFEA-F and MFEA-P, which share the same replication as

MFEA, but with different settings of auxiliary task.

Specifically, MFEA-F and MFEA-P only involve auxiliary

tasks CTOP-F and CTOP-P, respectively. For the same reason,

METOA-F, METOA-P, MFEA-II-F and MFEA-II-P are also

considered for discussion. In addition, four representative

single-task algorithms, including HGPCA [35], PSO [36], DE

[37] and GA [38], are involved in the comparison with METOA.

The default settings of the compared algorithms are given as

follows.

(1) Population size: 𝑁𝑃 = 100.

(2) Maximum function evaluations: 𝑚𝑎𝑥𝐹𝐸𝑠 = 4000.

(3) Independent number of runs: 𝑅𝑢𝑛𝑠 = 20.

(4) The parameters for MFEA: Crossover probability 𝑝𝑐 = 1,

mutation probability 𝑝𝑚 = 1/𝐷 , and random mating

probability 𝑟𝑚𝑝 = 0.3.

(5) The parameters for MFEA-II: Crossover probability 𝑝𝑐 =
1 , mutation probability 𝑝𝑚 = 1/𝐷 , and random mating

probability based on online 𝑟𝑚𝑝 learning.

(6) The parameters for the proposed METOA: Scaling factor

𝛾 = 0.5 , convergence coefficient 𝛽 = 0.1 , crossover

probability 𝑝𝑐 = 1, and mutation probability 𝑝𝑚 = 1/𝐷.

(7) The parameters for the HGPCA: Crossover probability

𝑝𝑐 = 1, mutation probability 𝑝𝑚 = 1/𝐷, Inertia weight 𝑤𝐼 =
0.4, acceleration instants 𝑐1 = 𝑐2 = 1.5.

(8) The parameters for the PSO: Inertia weight wI = 0.6,

learn factors 𝑐1 = 𝑐2 = 2.

(9) The parameters for the DE: Mutation factor 𝐹 = 0.9 ,

crossover probability 𝑐𝑅 = 0.8.

(10) The parameters for the GA: Crossover probability 𝑝𝑐 =
1, mutation probability 𝑝𝑚 = 1/𝐷.

Note that in the numerical analysis, the Wilcoxon rank sum

test at a significance level of 0.05 is performed to evaluate the

contrast results. The symbols “+” or “-” indicates that the

corresponding algorithm has a better or worse average

performance than METOA, respectively. The symbol “≈”

denotes that the corresponding algorithm and METOA have a

similar average performance.

B. Multitask Algorithms with Auxiliary Tasks

Since the introduction of auxiliary tasks can bring efficient

multitasking for handling complex optimization problems, we

analyze and compare the search performances of the MFEA,

MFEA-II and the proposed METOA based on different

auxiliary tasks in optimizing CTOP.

As shown in Fig. 4, an overview of the convergence

performance of each algorithm during the evolutionary process

is provided. There are obvious differences in the total cost of

task offloading with different algorithms. It can be observed

from Fig. 4 that the convergence performance of METOA

outperforms all other compared algorithms. Meanwhile, the

METOA, MFEA-II and MFEA are able to achieve better

convergence performance compared to their variants,

respectively. This result, as expected, demonstrates the

knowledge transfer from auxiliary tasks in MTO does

contribute to convergence acceleration and solution finding.

When compared against the MFEA-F and the MFEA-P, the

MFEA obtains better results. This is mainly due to the fact that

MFEA employs both auxiliary tasks CTOP-F and CTOP-P,

Fig. 4. The convergence trends of METOA, METOA-F, METOA-P,

MFEA, MFEA-F, MFEA-P, MFEA-II, MFEA-II-F and MFEA-II-P.

0 500 1000 1500 2000 2500 3000 3500 4000
52

54

56

58

60

62

64

66

68

70

Function Evaluations

T
o

ta
l

c
o

st

METOA

METOA-F

METOA-P

MFEA

MFEA-F

MFEA-P

0 500 1000 1500 2000 2500 3000 3500 4000
52

54

56

58

60

62

64

66

68

70

Function Evaluations

T
o

ta
l

c
o

st

METOA

METOA-F

METOA-P

MFEA-II

MFEA-II-F

MFEA-II-P

which possess the advantages of strong local search. Similarly,

the MFEA-II has been observed to outperform the MFEA-II-F

and the MFEA-II-P. As mentioned before, the only difference

between the algorithms and their corresponding variants is the

configuration of the auxiliary tasks, the obtained results again

confirmed the effectiveness of introducing auxiliary tasks in

solving CTOP.

It was noticed that METOA and its variants (METOA-F and

METOA-P) obtained better results than MFEA and their

variants (MFEA-F and MFEA-P), respectively. Moreover, the

MFEA-II and its variants (MFEA-II-F and MFEA-II-P) also

obtained better results than MFEA and their variants (MFEA-F

and MFEA-P), respectively. The potential reason is the gap in

the efficiency of the genetic transfer. Although cross-task

genetic transfer occurred during the evolution of MFEA, its

vulnerability to negative transfer makes them difficult to

enhance the search. The MFEA-II improves the process of

genetic transfer based on online RMP learning. In addition,

METOA, METOA-F and METOA-P are good at obtaining

positive transfer for search. Specifically, METOA and its

variants (METOA-F and METOA-P) can quickly optimize the

total cost of the CTOP in the early stages of evolution. On the

one hand, cheap auxiliary tasks are optimized rapidly due to

their simple nature. On the other hand, the proposed segmented

knowledge transfer enhances the local search capability using

the source decision variables learned by the optimized auxiliary

task, while improving the global search capability using the

extended decision variables. In the subsequent evolutionary

search, the auxiliary tasks are updated adaptively. With

beneficial cross-domain transfer of high-quality genetic

material, it tends to guide the cost function of CTOP converge

smoothly around the global optimum.

Table II shows the mean value and standard deviation of the

total cost on CTOP instances of all the multitask comparison

algorithms according to 20 independent runs, where the best

result is highlighted.

The proposed METOA has been observed to outperform all

other algorithms for different number of function evaluations

on almost all CTOP instances. In particular, the proposed

METOA achieves better solution quality when the number of

mobile devices increases, compared to MFEA and MFEA-II,

on CTOP instances with different numbers of mobile devices.

Moreover, it also can be observed that, the proposed METOA

can maintain excellent performance when the computational

resources (function evaluations) are constrained. For example,

for an CTOP instance with 40 mobile devices, the proposed

METOA with 2000 function evaluations achieves competitive

result against MFEA with 4000 function evaluations. As shown

in Fig. 5, we plot the total cost versus the number of mobile

devices. This further validates that the proposed METOA is

capable of adaptively optimizing task offloading as the number

of mobile devices rise.

In general, it can be observed from the obtained results above

that introducing cheaper auxiliary tasks and exploiting

knowledge from there to speed up the problem solving of

CTOP not only improves the search of multitasking, but also

enhances the scalability of the solver to cope with large-scale

problems.

C. Comparison with Single-Task Algorithms

For a comprehensive performance evaluation, we also discuss

the performance of the proposed METOA contrast to the

single-tasking algorithms in different CTOP instances.

Fig. 6 shows the curves of the total cost on CTOP instance

based on 20 independent runs of METOA, HGPCA, PSO, DE,

and GA with 4000 function evaluations. The results show that

the proposed METOA has better convergence performance

than HGPCA, PSO, DE, and GA during the procedure of

evolution. We noted that although the PSO converges faster

than METOA, HGPCA, DE, and GA in in the early stages of

evolution, it soon plunges into a local optimum. This indicates

that METOA can effectively overcome the issue of local

optimum, and achieves a good balance between convergence

and diversity. The reason may be that the generated auxiliary

tasks contribute to obtain a good diversity of the target problem.

When the search is trapped in a local optimum, the update of

the auxiliary tasks can drive the exploitation of other areas of

the search space. Table III shows the mean value, best value

and standard deviation of total cost of METOA, HGPCA, PSO,

DE, and GA on CTOP instances with different numbers of

mobile devices and SBSs, in which the best results are marked

in bold. In the multiple independent runs, it can be seen that the

best solution found by the proposed algorithm is better than

Fig. 6. The convergence trends of METOA, HGPCA, PSO, DE and GA.

0 500 1000 1500 2000 2500 3000 3500 4000
52

54

56

58

60

62

64

66

68

70

Function Evaluations

T
o

ta
l

c
o

st

 METOA

HGPCA

PSO

DE

GA

Fig. 5. The total cost of task offloading under different number of mobile

devices.

40 50 60 70 80 90 100
10

20

30

40

50

60

Number of Mobile Devices

T
o

ta
l

c
o

st

METOA

METOA-F

METOA-P

MFEA

MFEA-F

MFEA-P

other algorithms, which demonstrates the advantage of the

proposed algorithm to find high-quality solutions. The results

show that the transfer of source decision variables can

accelerate the convergence of the algorithm due to the high

similarity between the auxiliary task and the target problem.

Meanwhile, the transfer of the extended decision variables can

improve the outcomes of the algorithm that terminates

prematurely due to local optimum. Moreover, it can be

Table II

 THE AVERAGE VALUE AND STANDARD DEVIATION OF TOTAL COST OF TASK OFFLOADING OBTAINED BY METOA, METOA-F,

METOA-P, MFEA, MFEA-F and MFEA-P ON CTOP INSTANCES, WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Algorithms Function Evaluations
Number of Mobile Devices

40 60 80 100

METOA

2000
1.2094e+01
(2.3807e-01)

2.4848e+01
(7.0865e-01)

3.7769e+01

(1.1458e+00)

5.5161e+01

(9.2405e-01)

4000
1.1758e+01
(1.7024e-01)

2.3478e+01
(3.1101e-01)

3.6830e+01

(5.9951e-01)
5.3982e+01

(1.5661e+00)

6000
1.1583e+01
(1.3299e-01)

2.3262e+01
(3.5270e-01)

3.5975e+01

(7.0538e-01)
5.2318e+01

(1.0289e+00)

METOA-F

2000
1.2632e+01 -
(2.7213e-01)

2.5291e+01 ≈
(4.3374e-01)

3.9421e+01 -

(1.1589e+00)

5.7958e+01 -

(1.2971e+00)

4000
1.2085e+01 -
(1.3483e-01)

2.4615e+01 -
(4.0855e-01)

3.9164e+01 -
(1.1208e+00)

5.6966e+01 -
(1.6780e+00)

6000
1.2088e+01 -
(1.3612e-01)

2.4252e+01 -
(2.8128e-01)

3.7417e+01 -
(7.4720e-01)

5.5114e+01 -
(1.5006e+00)

METOA-P

2000
1.2543e+01 -
(2.3688e-01)

2.5679e+01 -
(7.8266e-01)

4.0386e+01 -

(9.7280e-01)

5.8896e+01 -

(1.4340e+00)

4000
1.2250e+01 -
(2.0732e-01)

2.4932e+01 -
(5.7432e-01)

3.9039e+01 -
(8.7909e-01)

5.7244e+01 -
(1.6063e+00)

6000
1.1996e+01 -
(1.7837e-01)

2.4337e+01 -
(4.7890e-01)

3.7790e+01 -
(8.6645e-01)

5.5362e+01 -
(1.4026e+00)

MFEA

2000
1.2442e+01 -
(1.0352e-01)

2.5997e+01 -
(1.9544e-01)

4.1817e+01 -

(5.3147e-01)

6.2012e+01 -

(9.5408e-01)

4000
1.2014e+01 -
(9.7236e-02)

2.4826e+01 -
(3.0732e-01)

3.9639e+01 -

(6.8410e-01)

5.9165e+01 -

(7.8502e-01)

6000
1.1779e+01 -
(1.1172e-01)

2.4015e+01 -
(2.6456e-01)

3.8123e+01 -
(3.7728e-01)

5.6969e+01 -
(8.9715e-01)

MFEA-F

2000
1.2568e+01 -
(7.5329e-02)

2.6085e+01 -
(3.9408e-01)

4.2190e+01 -

(5.3363e-01)

6.2059e+01 -

(1.0260e+00)

4000
1.2128e+01 -
(1.1772e-01)

2.5017e+01 -
(2.5685e-01)

4.0124e+01 -
(6.2806e-01)

5.9716e+01 -
(7.0933e-01)

6000
1.1943e+01 -
(1.2160e-01)

2.4329e+01 -
(3.1334e-01)

3.8809e+01 -
(4.5461e-01)

5.7632e+01 -
(5.9805e-01)

MFEA-P

2000
1.2539e+01 -
(2.1739e-01)

2.6207e+01 -
(3.9268e-01)

4.2120e+01 -

(8.2937e-01)

6.2591e+01 -

(5.1515e-01)

4000
1.2128e+01 -
(1.2327e-01)

2.5015e+01 -
(1.6712e-01)

4.0271e+01 -
(4.8329e-01)

5.9860e+01 -
(8.2737e-01)

6000
1.1883e+01 -
(1.0490e-01)

2.4433e+01 -
(2.4128e-01)

3.8689e+01 -
(3.5247e-01)

5.7996e+01 -
(8.6785e-01)

MFEA-II

2000
1.2329e+01 -
(1.2629e-01)

2.5627e+01 -
(2.4021e-01)

4.1332e+01 -
(7.4524e-01)

6.0956e+01 -
(6.6838e-01)

4000
1.1857e+01 ≈
(1.1299e-01)

2.4570e+01 -
(2.6410e-01)

3.8896e+01 -
(5.3974e-01)

5.7982e+01 -
(9.9825e-01)

6000
1.1636e+01 ≈
(5.7249e-02)

2.3674e+01 -
(2.9410e-01)

3.7797e+01 -
(2.7983e-01)

5.6218e+01 -
(7.1525e-01)

MFEA-II-F

2000
1.2504e+01 -
(1.4705e-01)

2.6151e+01 -
(2.3974e-01)

4.1752e+01 -
(4.7920e-01)

6.2054e+01 -
(5.6797e-01)

4000
1.2061e+01 -
(1.4016e-01)

2.4908e+01 -
(2.4502e-01)

3.9836e+01 -
(3.9772e-01)

5.9085e+01 -
(6.9965e-01)

6000
1.1761e+01 -
(1.2547e-01)

2.4074e+01 -
(2.3342e-01)

3.8425e+01 -
(4.3768e-01)

5.7138e+01 -
(5.0945e-01)

MFEA-II-P

2000
1.2524e+01 -
(4.7692e-02)

2.6249e+01 -
(2.7793e-01)

4.1481e+01 -
(4.0246e-01)

6.2283e+01 -
(6.5650e-01)

4000
1.2100e+01 -
(9.5371e-02)

2.4968e+01 -
(1.7748e-01)

3.9877e+01 -
(5.9537e-01)

5.9119e+01 -
(5.2419e-01)

6000
1.1803e+01 -
(1.1301e-01)

2.4150e+01 -
(1.4334e-01)

3.8709e+01 -
(3.6382e-01)

5.6970e+01 -
(3.9182e-01)

observed that the proposed METOA obtains a better average

performance on most CTOP instances. Expectedly, the

obtained average total cost of all the algorithms increases as

more mobile devices are served. Meanwhile, with an increasing

number of SBSs, the higher average total cost can be caused by

all the algorithms because of the increased interferences the

mobile device suffered. When the number of mobile devices

and SBSs is small, we can see that the PSO achieves better

results than METOA, HGPCA, DE and GA. Although the

METOA achieves slightly lower results than PSO, it

outperforms HGPCA, DE and GA on most of the CTOP

instances. Nevertheless, we can see from Fig. 7 that, the

Table III

 THE AVERAGE VALUE, BEST VALUE AND STANDARD DEVIATION OF TOTAL COST OF TASK OFFLOADING OBTAINED BY METOA,

HGPCA, PSO, DE and GA ON CTOP INSTANCES, WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Number of Mobile Devices Number of SBS
Algorithms

METOA HGPCA PSO DE GA

40

5
5.2213e+00
5.1988e+00
(1.7816e-02)

5.2603e+00 –
5.2300e+00
(1.8750e-02)

5.2024e+00 +
5.1758e+00
(1.9942e-02)

5.3713e+00 –

5.3396e+00

(2.4659e-02)

5.3081e+00 –

5.2786e+00

(1.7786e-02)

10
1.1702e+01
1.1446e+01
(1.4386e-01)

1.2205e+01 –
1.2007e+01
(1.2952e-01)

1.1883e+01 ≈
1.1556e+01
(2.4559e-01)

1.2617e+01 –
1.2292e+01
(1.4717e-01)

1.2420e+01 –
1.2271e+01
(9.4962e-02)

15
3.1767e+01
3.0907e+01
(6.2586e-01)

3.6878e+01 –
3.6318e+01
(5.7907e-01)

3.9056e+01 –
3.6384e+01

(2.0996e+00)

3.4393e+01 –
3.2594e+01
(8.3541e-01)

3.8338e+01 –
3.7646e+01
(4.0270e-01)

60

5
9.2638e+00
9.1974e+00
(4.3654e-02)

9.3892e+00 –
9.3068e+00
(5.8511e-02)

9.1871e+00 +
9.1599e+00
(2.0298e-02)

9.7216e+00 –
9.6085e+00
(7.8282e-02)

9.5520e+00 –
9.4976e+00
(3.6647e-02)

10
2.3477e+01
2.2808e+01
(3.0134e-01)

2.4859e+01 –
2.4457e+01
(2.2177e-01)

2.4184e+01 –
2.3440e+01
(5.3173e-01)

2.5770e+01 –
2.5525e+01
(3.5373e-01)

2.5523e+01 –
2.5170e+01
(3.2043e-01)

15
5.8940e+01
5.6148e+01

(2.3378e+00)

6.8816e+01 –
6.7015e+01

(1.2775e+00)

6.9599e+01 –
6.5379e+01

(3.7367e+00)

6.7427e+01 –
6.5148e+01

(1.5385e+00)

7.1087e+01 –
7.0329e+01
(5.4559e-01)

80

5
1.3546e+01
1.3416e+01
(8.4269e-02)

1.3638e+01 ≈

1.3491e+01
(1.5114e-01)

1.3356e+01 +
1.3323e+01
(3.9581e-02)

1.4374e+01
1.4105e+01
(1.9545e-01)

1.4163e+01
1.3987e+01
(1.1151e-01)

10
3.6421e+01
3.5770e+01
(6.4641e-01)

3.9666e+01 –
3.8696e+01
(5.9005e-01)

3.8743e+01 –
3.7578e+01
(9.6275e-01)

4.1962e+01 –
4.0317e+01

(1.0101e+00)

4.0968e+01 –
4.0207e+01
(6.6808e-01)

15
8.4774e+01
8.2270e+01

(2.2755e+00)

9.9090e+01 –
9.7385e+01
(9.6888e-01)

9.6154e+01 –
9.1758e+01

(4.4446e+00)

1.0154e+02 –
9.7978e+01

(2.5617e+00)

1.0262e+02 –
1.0172e+02
(8.0160e-01)

100

5
1.8569e+01
1.8346e+01
(1.3873e-01)

1.8546e+01 ≈

1.8428e+01
(9.2339e-02)

1.8235e+01 +
1.8188e+01
(2.7692e-02)

1.9978e+01 –
1.9736e+01
(2.1405e-01)

1.9621e+01 –
1.9287e+01
(1.9804e-01)

10
5.3883e+01
5.1626e+01

(2.3127e+00)

5.8598e+01 –
5.7108e+01
(7.7233e-01)

5.7341e+01 –
5.5258e+01

(1.6363e+00)

6.2645e+01 –
6.0466e+01

(1.3440e+00)

6.1002e+01 –
5.9763e+01
(6.5879e-01)

15
1.1651e+02
1.1033e+02

(4.1832e+00)

1.2742e+02 –
1.2402e+02

(1.8425e+00)

1.2975e+02 –
1.1803e+02

(9.2492e+00)

1.3496e+02 –
1.3331e+02

(1.3718e+00)

1.3483e+02 –
1.3331e+02
(9.2928e-01)

Fig. 7. The total cost of task offloading under different number of mobile devices and SBSs, respectively.

40 50 60 70 80 90 100
10

20

30

40

50

60

70

Number of Mobile Devices

T
o

ta
l

c
o

st

METOA

HGPCA

PSO

DE

GA

5 7 9 11 13 15
0

20

40

60

80

100

120

140

Number of SBS
T

o
ta

l
c
o

st

METOA

HGPCA

PSO

DE

GA

performance of the PSO drops significantly with an increasing

number of mobile devices and SBSs, as does HGPCA, DE and

GA. In contrast, the METOA manages to achieve much better

performance than all the single-task algorithms in such a

condition, which demonstrates the good scalability of METOA.

D. Effectiveness Analysis of Knowledge Transfer

To verify the effectiveness of knowledge transfer in METOA,

we further analyzed the synergistic effects of the proposed

segmented knowledge transfer and auxiliary tasks update in

evolutionary search.

According to the proposed strategies in Section IV, we first

recorded the number of knowledge transfer from the auxiliary

tasks to the CTOP. Then, we investigated the updates of the

auxiliary tasks in different evolutionary stages. Notably, the

knowledge transfer mentioned here indicates a positive transfer

that the transfer of genetic material can make an improvement

for the obtained solution of CTOP. Fig. 8 shows the rising trend

of the number of knowledge transfer throughout the

evolutionary process. It can be observed that the knowledge

transfer from auxiliary tasks provides a great help to CTOP in

the early stages of evolution, which is consistent to the results

obtained in Fig. 4 and Fig. 6. This is probably because the

cheap auxiliary tasks are easier to be handle than CTOP, which

can provide useful evolutionary information quickly for CTOP,

resulting in a rapid discovery of high-quality solutions.

However, this is clearly not the case in the middle stages of

evolution. As the auxiliary tasks gradually converge and

eventually stagnate, genetic transfer from the auxiliary tasks is

hardly effective. To tackle this, auxiliary tasks are updated to

change the direction of evolution and improve the diversity of

population. Therefore, in Fig. 8, the number of knowledge

transfer has been observed to rise again, after the new auxiliary

tasks are generated. There is a similar situation in the later

stages of evolution. As a result, the METOA successfully

exploits the positive transfer from the auxiliary tasks, while

circumventing the distress caused by evolutionary stagnation.

Further, the knowledge transfer from the auxiliary tasks to the

CTOP mainly includes source decision variables transfer and

extended decision variables transfer. Within a single transfer

cycle, the transferred source and extended decision variables

are from the same chromosome, the difference being that the

former uses direct transfer and the latter uses indirect transfer.

To observe the effect of knowledge transfer more clearly, in Fig.

9, we plot the success rate (ratio of the number of positive

transfers to the total number of transfer) of transferring the

source and extended decision variables from the auxiliary tasks

to the CTOP throughout the evolutionary process. We can see

that the transfer of both the decision variables is valid for the

CTOP. As expected, in the early stages of evolution, for

knowledge transfer, the source decision variables have a higher

efficiency than the extended decision variables. This is due to

the high similarity between the auxiliary tasks and CTOP, the

transfer of source decision variables is able to accelerate

convergence process. Complementary to source decision

variables, the expanded decision variables are transferred to

maintains a good diversity. In summary, the knowledge transfer

in METOA is constructive for the evolutionary search in the

CTOP.

VI. CONCLUSION

In this article, we handled the costly task offloading problem

by introducing related and cheap auxiliary tasks into the

proposed evolutionary multitasking framework. With the help

of knowledge extraction and transfer from auxiliary tasks, the

target problem can be quickly optimized. Moreover, we

proposed a novel multitask evolutionary task offloading

algorithm for solving the costly task offloading problem by

using segmented knowledge transfer and auxiliary task update.

Experimental results show that the proposed algorithm is

capable of good performance in convergence, diversity and

scalability, which demonstrates that the knowledge transfer

from constructed auxiliary tasks can indeed effectively

facilitate the search performance of the costly task offloading

problem.

In future work, we plan to study how to construct available

auxiliary tasks for complex optimization problems. Meanwhile,

when there are multiple auxiliary tasks, how the auxiliary tasks

should work in collaboration is an issue to be investigated.

Fig. 9. The success rate of transferring the source and extended decision

variables from the auxiliary tasks to the CTOP, respectively.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Function Evaluations

S
u

c
c
e
ss

 r
a
te

 o
f

k
n

o
w

le
d

g
e
 t

ra
n

sf
e
r

Source decision variables

Extended decision variables

Fig. 8. The number of knowledge transfer from the auxiliary tasks to the

CTOP.

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

Function Evaluations

N
u

m
b

e
r

o
f

k
n

o
w

le
d

g
e
 t

ra
n

sf
e
r

Update auxiliary tasks

DECLARATION OF INTEREST

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

REFERENCES

[1] T. X. Tran, A. Hajisami, P. Pandey and D. Pompili, "Collaborative

Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios,

and Challenges," IEEE Communications Magazine, vol. 55, no. 4, pp.

54-61, April 2017.

[2] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar and A. Y. Zomaya, "Edge

Intelligence: The Confluence of Edge Computing and Artificial

Intelligence," IEEE Internet of Things Journal, vol. 7, no. 8, pp.

7457-7469, Aug. 2020.

[3] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, "Mobile Edge

Computing: A Survey," IEEE Internet of Things Journal, vol. 5, no. 1, pp.

450-465, Feb. 2018.

[4] Gupta, Abhishek, and Y. S. Ong. "Back to the Roots: Multi-X

Evolutionary Computation," Cognitive Computation, vol. 11, no. 1, pp.

1–17, Jan. 2019.

[5] F. Song, H. Xing, S. Luo, D. Zhan, P. Dai and R. Qu, "A Multiobjective

Computation Offloading Algorithm for Mobile-Edge Computing," IEEE

Internet of Things Journal, vol. 7, no. 9, pp. 8780-8799, Sept. 2020.

[6] L. Pan, X. Liu, Z. Jia, J. Xu and X. Li, "A Multi-objective Clustering

Evolutionary Algorithm for Multi-workflow Computation Offloading in

Mobile Edge Computing," IEEE Transactions on Cloud Computing, vol.

68, no. 1, pp. 856–868, Jan. 2019.

[7] J. Zhang et al., "Energy-Latency Tradeoff for Energy-Aware Offloading

in Mobile Edge Computing Networks," IEEE Internet of Things Journal,

vol. 5, no. 4, pp. 2633-2645, Aug. 2018.

[8] A. Younis, T. X. Tran and D. Pompili, "Energy-Latency-Aware Task

Offloading and Approximate Computing at the Mobile Edge," 2019 IEEE

16th International Conference on Mobile Ad Hoc and Sensor Systems

(MASS), 2019, pp. 299-307.

[9] A. Gupta, Y. Ong and L. Feng, "Multifactorial Evolution: Toward

Evolutionary Multitasking," IEEE Transactions on Evolutionary

Computation, vol. 20, no. 3, pp. 343-357, June 2016.

[10] K. K. Bali, Y. -S. Ong, A. Gupta and P. S. Tan, "Multifactorial

Evolutionary Algorithm With Online Transfer Parameter Estimation:

MFEA-II," IEEE Transactions on Evolutionary Computation, vol. 24, no.

1, pp. 69-83, Feb. 2020.

[11] A. Gupta, L. Zhou, Y. S. Ong, Z. Chen and Y. Hou, "Half a Dozen

Real-World Applications of Evolutionary Multitasking, and More," IEEE

Computational Intelligence Magazine, vol. 17, no. 2, pp. 49-66, May

2022.

[12] N. Zhang, A. Gupta, Z. Chen and Y. -S. Ong, "Evolutionary Machine

Learning With Minions: A Case Study in Feature Selection," IEEE

Transactions on Evolutionary Computation, vol. 26, no. 1, pp. 130-144,

Feb. 2022.

[13] X. Ma et al., "Enhanced Multifactorial Evolutionary Algorithm With

Meme Helper-Tasks," IEEE Transactions on Cybernetics, vol. 52, no. 8,

pp. 7837-7851, Aug. 2022.

[14] K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolutionary

multitasking optimization framework for constrained multi-objective

optimization problems,” IEEE Transactions on Evolutionary

Computation, vol. 26, no. 2, pp. 1–15, April. 2022.

[15] P. Dai, K. Liu, X. Wu, Y. Liao, V. C. S. Lee and S. H. Son, "Bandwidth

Efficiency and Service Adaptiveness Oriented Data Dissemination in

Heterogeneous Vehicular Networks," IEEE Transactions on Vehicular

Technology, vol. 67, no. 7, pp. 6585-6598, July 2018.

[16] X. Wang, Z. Ning and L. Wang, "Offloading in Internet of Vehicles: A

Fog-Enabled Real-Time Traffic Management System," IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4568-4578,

Oct. 2018.

[17] Z. Ning, J. Huang and X. Wang, "Vehicular Fog Computing: Enabling

Real-Time Traffic Management for Smart Cities," IEEE Wireless

Communications, vol. 26, no. 1, pp. 87-93, February 2019.

[18] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and M. Bennis, "Optimized

Computation Offloading Performance in Virtual Edge Computing

Systems Via Deep Reinforcement Learning," in IEEE Internet of Things

Journal, vol. 6, no. 3, pp. 4005-4018, June 2019.

[19] Y. Wang, M. Sheng, X. Wang, L. Wang and J. Li, "Mobile-Edge

Computing: Partial Computation Offloading Using Dynamic Voltage

Scaling," IEEE Transactions on Communications, vol. 64, no. 10, pp.

4268-4282, Oct. 2016.

[20] T. Q. Dinh, J. Tang, Q. D. La and T. Q. S. Quek, "Offloading in Mobile

Edge Computing: Task Allocation and Computational Frequency

Scaling," IEEE Transactions on Communications, vol. 65, no. 8, pp.

3571-3584, Aug. 2017.

[21] J. Zhang et al., "Energy-Latency Tradeoff for Energy-Aware Offloading

in Mobile Edge Computing Networks," IEEE Internet of Things Journal,

vol. 5, no. 4, pp. 2633-2645, Aug. 2018.

[22] C. Wang, F. R. Yu, C. Liang, Q. Chen and L. Tang, "Joint Computation

Offloading and Interference Management in Wireless Cellular Networks

with Mobile Edge Computing," IEEE Transactions on Vehicular

Technology, vol. 66, no. 8, pp. 7432-7445, Aug. 2017.

[23] L. Feng et al., “An empirical study of multifactorial PSO and

multifactorial DE,” 2017 IEEE Congress on Evolutionary Computation

(CEC), 2017, pp. 921-928.

[24] K. K. Bali, A. Gupta, L. Feng, Y. S. Ong and Tan Puay Siew, "Linearized

domain adaptation in evolutionary multitasking," 2017 IEEE Congress on

Evolutionary Computation (CEC), 2017, pp. 1295-1302.

[25] Z. Liang, W. Liang, Z. Wang, X. Ma, L. Liu and Z. Zhu, "Multiobjective

Evolutionary Multitasking With Two-Stage Adaptive Knowledge

Transfer Based on Population Distribution," IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4457-4469,

July 2022.

[26] Z. Liang, H. Dong, C. Liu, W. Liang and Z. Zhu, "Evolutionary

Multitasking for Multiobjective Optimization With Subspace Alignment

and Adaptive Differential Evolution," IEEE Transactions on Cybernetics,

vol. 52, no. 4, pp. 2096-2109, April 2022.

[27] M. Gong, Z. Tang, H. Li and J. Zhang, "Evolutionary Multitasking With

Dynamic Resource Allocating Strategy," in IEEE Transactions on

Evolutionary Computation, vol. 23, no. 5, pp. 858-869, Oct. 2019.

[28] H. Xu, A. K. Qin and S. Xia, "Evolutionary Multitask Optimization With

Adaptive Knowledge Transfer," in IEEE Transactions on Evolutionary

Computation, vol. 26, no. 2, pp. 290-303, April 2022.

[29] J. Ding, C. Yang, Y. Jin and T. Chai, "Generalized Multitasking for

Evolutionary Optimization of Expensive Problems," IEEE Transactions

on Evolutionary Computation, vol. 23, no. 1, pp. 44-58, Feb. 2019.

[30] F. Zhang, Y. Mei, S. Nguyen, M. Zhang and K. C. Tan,

"Surrogate-Assisted Evolutionary Multitask Genetic Programming for

Dynamic Flexible Job Shop Scheduling," IEEE Transactions on

Evolutionary Computation, vol. 25, no. 4, pp. 651-665, Aug. 2021.

[31] X. Hou et al., "Reliable Computation Offloading for

Edge-Computing-Enabled Software-Defined IoV," IEEE Internet of

Things Journal, vol. 7, no. 8, pp. 7097-7111, Aug. 2020.

[32] N. Zhang, A. Gupta, Z. Chen and Y. -S. Ong, "Evolutionary Machine

Learning With Minions: A Case Study in Feature Selection," IEEE

Transactions on Evolutionary Computation, vol. 26, no. 1, pp. 130-144,

Feb. 2022.

[33] K. Qiao et al., "Dynamic Auxiliary Task-Based Evolutionary

Multitasking for Constrained Multi-objective Optimization," in IEEE

Transactions on Evolutionary Computation, 2022.

[34] Z. Chen, A. Gupta, L. Zhou and Y. -S. Ong, "Scaling Multiobjective

Evolution to Large Data With Minions: A Bayes-Informed Multitask

Approach," in IEEE Transactions on Cybernetics, 2022.

[35] F. Guo, H. Zhang, H. Ji, X. Li and V. C. M. Leung, "An Efficient

Computation Offloading Management Scheme in the Densely Deployed

Small Cell Networks With Mobile Edge Computing," in IEEE/ACM

Transactions on Networking, vol. 26, no. 6, pp. 2651-2664, Dec. 2018.

[36] Y. Wen, Q. Zhang, H. Yuan and J. Bi, "Multi-Stage PSO-Based Cost

Minimization for Computation Offloading in Vehicular Edge Networks,"

2021 IEEE International Conference on Networking, Sensing and Control

(ICNSC), 2021, pp. 1-6.

[37] X. Li, G. Zhang, X. Zheng and S. Hua, "Delay Optimization Based on

Improved Differential Evolutionary Algorithm for Task Offloading in

Fog Computing Networks," 2020 International Conference on Wireless

Communications and Signal Processing (WCSP), 2020, pp. 109-114.

[38] D. Ye, M. Wu, S. Tang and R. Yu, "Scalable Fog Computing with Service

Offloading in Bus Networks," 2016 IEEE 3rd International Conference

on Cyber Security and Cloud Computing (CSCloud), 2016, pp. 247-251.

