
  

Abstract—The offloading of computation-intensive tasks to an 

edge server close to the resource-constrained mobile devices can 

provide better application performance and user experience. 

However, with the rapid growth of mobile devices connected to 

the edge server, it is challenging to directly obtain an optimal task 

offloading scheme due to the increasing computational cost and 

problem scale. In this paper, we model the costly task offloading 

problem (CTOP) in mobile edge computing networks with the 

goal to achieve efficient joint optimization of energy consumption 

and processing latency for mobile devices. Inspired by the success 

of evolutionary multitasking in solving complex optimization 

problems by leverage the experience of simple optimization 

problems, we develop a novel multitasking framework whose 

effectiveness is demonstrated in solving CTOP. In this framework, 

auxiliary tasks are created for optimizing the local processing 

overhead and the edge processing overhead of task offloading. On 

this basis, we propose an effective multitask evolutionary 

algorithm that includes segmented knowledge transfer and 

auxiliary task update. Specially, source and extended decision 

variables are considered as different knowledge to be utilized, 

while the auxiliary tasks are allowed to be updated dynamically. 

Related knowledge learned from cheap and simple auxiliary tasks 

promote the evolutionary search for CTOP. The experimental 

results verify the effectiveness of knowledge transfer. Compared 

to other state-of-the-art multitasking algorithms as well as 

single-tasking algorithms, the proposed algorithm shows 

competitiveness in CTOP instances and can achieve better 

comprehensive performance in terms of energy consumption and 

processing latency. 
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I. INTRODUCTION 

ith the advances in mobile computing, Internet of Things 

and 5G/6G networks [1], the convergence of mobile 

technologies and artificial intelligence [2] facilitates mobile 

devices to support many resource-intensive smart applications 

like face recognition, image search and machine translation, etc. 

Offloading computation-intensive tasks of smart applications to 

a powerful edge server close to the resource-constrained mobile 

devices can provide better application performance and user 

experience. However, the rapid growth of mobile devices and 

computational tasks highlights ineluctable challenges of task 

offloading in terms of decision making and resource scheduling 

[3].  

A prominent approach for the task offloading problem is that 

of evolutionary computation [4]. Song et al. [5] proposed an 

improved multi-objective evolutionary algorithm with two 

performance enhancing schemes, and considered the 

task-precedence constraints for the task offloading problem in 

mobile edge computing (MEC) networks. Pan et al. [6] 

presented a multi-objective clustering evolutionary algorithm 

for multi-workflow computation offloading, where an adaptive 

clustering approach is designed to improve the crossover 

operation. Although there have been many studies on task 

offloading, most of them cannot cope with the increasing 

computational cost and problem scale, and did not consider the 

issue of scalability. In [7] and [8], the costly task offloading 

problem (CTOP) is decomposed into multiple subproblems to 

simplify the search process by solving each subproblem 

separately. Although decomposition-based approaches can 

improve the search performance for CTOP, the subproblems 

are often solved independent and related knowledge learned is 

not exploited for more efficient optimization. 

Evolutionary multitasking (EMT) is an emerging 

optimization paradigm in the field of evolutionary computation 

[9]. Contrary to traditional single-tasking evolutionary 

algorithms, EMT attempts to tackle multiple optimization 

problems simultaneously with a single evolutionary solver. 

Driving cross-domain transfer of knowledge between distinct 

but probably related optimization problems, the augmented 

implicit parallelism of population is achieved by the capacity of 

multitasking [10]. Growing efforts have been made to develop 

innovative EMT algorithms for performance gains in diverse 
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studies [11]. 

The most recent studies indicate that one of the special 

characteristics of EMT is to take advantage of related and cheap 

auxiliary tasks to accelerate the evolutionary search of the 

costly optimization problem [12]-[14]. Compared to solving 

complex problems directly, the useful information gained from 

solving related and simple problems can help discover 

promising solutions and save the total evaluation cost. Even 

though existing EMT algorithms show strong competitiveness 

in dealing with costly optimization problems, key issues still 

exist to be investigated in terms of how to configure auxiliary 

tasks in a multitasking environment and how to efficiently 

exploit the useful information from the auxiliary tasks. 

Therefore, this paper proposes a novel EMT framework whose 

effectiveness is demonstrated in solving CTOP. Our method is 

to transform CTOP into a multi-task optimization problem by 

creating a set of highly correlated and computationally cheap 

auxiliary tasks, which aims to capture favorable knowledge 

from the auxiliary tasks to promote the search efficiency for 

CTOP. The auxiliary tasks are not only used for enhancing the 

capability of global search but also the capability of local 

search of the multitasking solver. The proposed method is 

expected to accelerate the convergence and improve the 

solution quality for CTOP. To the best of our knowledge, this is 

the first study to introduce EMT to solve CTOP. Specifically, 

the contributions of this article are given as follows. 

1) We build a system model for the costly task offloading 

problems in MEC networks with the goal to achieve joint 

optimization of energy consumption and processing latency, in 

which task offloading decision, computing resource allocation 

and transmission resource allocation are involved. In addition, 

we create two types of auxiliary tasks with the aim of 

minimizing the edge processing overhead and local processing 

overhead of task offloading, respectively. The auxiliary tasks 

possess different similarities to the CTOP and can contribute to 

the efficient CTOP solving.  

2) We develop a novel evolutionary multitasking framework, 

in which the CTOP is transformed into a multitasking 

optimization problem. The created auxiliary tasks are used to 

improve the evolutionary search of the CTOP by sharing 

favorable knowledge. The collaborative searching can greatly 

increase the efficiency and scalability of optimization 

algorithms in tackling the CTOP. 

3) We propose an effective multitask evolutionary algorithm 

with segmented knowledge transfer and auxiliary task update to 

realize efficient CTOP solving using the above multitasking 

framework. Experimental results show that the knowledge 

transfer from auxiliary tasks to CTOP can accelerate the 

convergence and improve the scalability of the algorithm. 

The rest of this paper is organized as follows. Section II 

provides a brief review of related work. We present the system 

model and construct the auxiliary tasks in Section III. In 

Section IV, the proposed method is introduced in detail. The 

experimental results and analyses are presented in Section V. 

Section VI concludes this paper and discuss future work. 

II. BACKGROUND 

A. Multitask Optimization 

The goal of multitask optimization (MTO) [1] is to provide a 

single optimizer that deals with multiple optimization tasks at 

the same time. Without loss of generality, given an 

optimization scenario in which K optimization tasks are to be 

solved simultaneously. We assume that all optimization tasks 

are minimization problems and may have some equality and/or 

inequality constraints. The 𝑗-th optimization task is represented 

as 𝑇𝑗 . Meanwhile, its search space is denoted as 𝑋𝑗 , the 

corresponding objective function is defined as 𝐹𝑗: 𝑋𝑗 → ℝ . 

With this setting, the MTO paradigm can be formulated as 

follows: 
{𝑥1, 𝑥2, … , 𝑥𝐾} = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝐾(𝑥𝐾)}   (1) 

where 𝑥𝑗 denotes a feasible solution in search space 𝑋𝑗. It is 

noteworthy that the search space 𝑋1, 𝑋2, … , 𝑋𝐾 of optimization 

task 𝑇1, 𝑇2, … , 𝑇𝐾  may be similar but often different. An 

effective way is to construct a unified search space [2], in which 

each of the component optimization tasks can be viewed as an 

additional influence factor to facilitate the knowledge transfer 

in a multitasking environment. In this paper, the CTOP is 

considered as the target optimization problem, while the 

auxiliary tasks are treated as other component optimization 

problems, they are allowed to be processed simultaneously in a 

multitasking environment. 

B. Task offloading 

The task offloading is of great interest in MEC networks, 

which has been extensively studied in recent years. In general, 

the execution latency is usually one of the most concerned 

performance criteria. Dai et al. [15] proposed a coding-assisted 

multi-objective evolutionary algorithm to optimize the service 

delay and the network access cost, which considered the packet 

encoding and network interface selection. Wang et al. [16] 

constructed a distributed traffic management system, the 

average system response time is minimized by scheduling the 

message flow allocation among vehicle-based fog nodes. Ning 

et al. [17] presented a three-layer vehicular fog computing 

model to effectively offload network traffic, the integration of 

cloudlet and fog nodes is used to reduce the response delay. 

Chen et al. [18] considered the time-varying network dynamics 

in computation offloading for a virtual MEC system. They 

proposed two double DQN-based online learning algorithms to 

deal with the stochastic computation offloading problem with 

time-varying communication qualities and computation 

resources. 

In real-world situations, the energy consumption is another 

important factor that must also be considered. In [19], Wang et 

al. realized the joint optimization of computational speed, 

transmit power and offloading ratio. They proposed a locally 

optimal algorithm with the univariate search technique to 

minimize the energy consumption and execution latency. An 

optimization framework that enables task offloading from a 

single mobile device to multiple edge devices is proposed in 

[20], which aims to minimize execution latency and energy 

consumption by coupling task allocation decisions and 

frequency scaling. Moreover, there are some studies focusing 



on the tradeoff between execution latency and energy 

consumption. To this end, Zhang et al. [21] proposed an 

energy-aware offloading scheme under the limited energy, 

which jointly optimizes communication and computation 

resource allocation in single and multicell MEC networks. 

Wang et al. [22] proposed an integrated framework to minimize 

the overall consumption of time and energy. The optimization 

problem consists of computation offloading decision, physical 

resource block allocation, and computation resource allocation. 

However, most works ignored the impact of the explosive 

growth in the number of mobile devices and computation tasks, 

especially when dealing with large-scale or large computing 

task offloading problems, which results in unaccepted user 

experience and insufficient scalability.  Although there are 

some studies that decomposed the target problem into several 

subproblems, the subproblems are only optimized individually 

rather than helping the solving of the target problem through 

knowledge sharing. Therefore, we conceive a novel task 

offloading mechanism that leverages the characteristics of 

evolutionary multitasking to take advantage of auxiliary tasks 

to accelerate the search for the CTOP. 

C. Evolutionary Multitasking 

One trend in the field of optimization has been to effectively 

multitask. Recently, the concept of evolutionary multitasking 

indicates that the genetic material evolved for one problem may 

be effective for another as well. In [1], Gupta et al. proposed a 

multifactorial evolutionary algorithm (MFEA) that first 

demonstrated the superiority of evolutionary multitasking. 

They drew on the theory of multifactorial inheritance, where 

the genetic and cultural transmission enables MEFA to conduct 

a cross-domain search. As a rising research perspective, the 

effectiveness of MFEA has been verified in discrete, 

continuous, single-objective, as well as multi-objective 

optimization with some impressive results [3]. 

There are many researches concentrated on the knowledge 

transfer in the multitasking environment. Feng et al. [23] 

explored the implicit knowledge transfer under particle swarm 

optimization and differential evolution. Bail et al. [24] 

presented a linearized domain adaptation approach to alleviate 

the issue of negative knowledge transfer. Liang et al. [25] 

proposed a two-stage adaptive knowledge transfer algorithm 

based on population distribution, the individual search 

strategies are adjusted in different stages of evolution to 

improve convergence performance. In [26], the mapping matrix 

generated by subspace learning is introduced to transform the 

search space of the population, thereby reducing the negative 

knowledge transfer in the process of evolution. However, the 

component optimization problems in multitasking environment 

may have different computational complexity. When the 

resources are limited, more resources should be allocated to 

hard-to-handle component optimization problems. To achieve 

adaptive allocation of computational resources, Gong et al. [27] 

presented an online dynamic resource allocation strategy based 

on the evaluation of computational complexities of component 

optimization problems. For reducing negative transfer due to 

the increase in the total number of component optimization 

tasks, Xu et al. [28] proposed an adaptive EMT framework to 

adjust knowledge transfer frequency, knowledge source 

selection, and knowledge transfer intensity.  

In particular, in the presence of correlation in component 

optimization problems, genetic transfer across domains usually 

leads to accelerated convergence of high-cost problems due to 

the rapid exploration of the search space by low-cost problems. 

Ding et al. [29] proposed a multitasking evolutionary 

optimization framework that uses decision variable translation 

and decision variable shuffling strategies to transfer knowledge 

from computationally inexpensive problems to help solve 

costly problems. Similarly, Zhang et al. [30] developed a 

surrogate-assisted multitasking method, which approximates 

individual fitness by building computationally inexpensive 

models to help reduce the number of function evaluations.  

If the optimization scenario does not contain a simple 

problem, then it can be artificially constructed. To solve 

complex optimization problems, Ma et al. [13] constructed 

strongly related meme helper-tasks based on the problem 

structure or decision variable grouping, aiming to escape local 

optima and increase population diversity. Zhang et al [12]. 

created a band of small data proxies for the main task, the 

knowledge extraction and reuse from small data tasks lead to 

rapidly optimization of the large dataset. Qiao et al. [33] 

analyzed the similarity of the constrained Pareto front and the 

unconstrained Pareto front. The constrained multi-objective 

problem with dynamic constraint boundary is modeled as an 

auxiliary task solved simultaneously with the source problem 

using an optimization multitasking framework. Chen et al. [34] 

proposed an efficient computation resource allocation strategy 

for minions generated using subsampled small-data tasks, in 

which more resources are allocated for tasks with high 

correlation measures based on Bayes’ rule.  

Evolutionary multitasking provides a promising means to 

deal with the increasingly complex and costly optimization 

problems. However, many existing EMT algorithms cannot 

fully exploit the useful information in the candidate solutions 

corresponding to auxiliary tasks, leading to an implicit waste of 

resources. Our proposed algorithm includes a segmented 

knowledge transfer strategy, in which both source and extended 

decision variables (from promising candidate individuals in 

auxiliary tasks) in the unified search space can contribute 

different knowledge to significantly facilitate the search of 

target problem. Moreover, in many EMT algorithms, they tend 

to pre-place all the auxiliary tasks in the multitasking 

environment and transfer knowledge from different auxiliary 

tasks simultaneously. This may result in potential transfer 

conflicts (leading to slow convergence speed or negative 

transfer) in the target problem. Our proposed algorithm also 

includes an auxiliary task update mechanism, which allows the 

dynamic generation of different auxiliary tasks to maintain 

population diversity and generate new knowledge during the 

evolutionary process. There are two simultaneous auxiliary 

tasks in a multitasking environment, each pair exploiting 

different but complementary areas of the search space. This 

mechanism can reduce the probability of transfer conflicts and 

realize flexible and efficient local optimization. 



III. SYSTEM MODEL AND AUXILIARY TASKS 

A. System Model 

A typical 5G heterogeneous MEC network is composed of 

one macro base station (MBS) and 𝑁  small base stations 

(SBSs), as shown in Fig. 1. We consider that the MBS is 

equipped with an MEC server and has the powerful ability to 

process multiple computationally intensive tasks of smart 

applications concurrently. The MEC server provides 

computing and storage services for resource-constrained 

mobile users to execute their smart applications. For each SBS, 

mobile devices can initiate the request over the wireless link. 

The SBSs are overlaid by the MBS and connected to the MBS 

via wired link [10]. To support heterogeneous devices well, 

software-defined networking (SDN) [31] is introduced as an 

orchestrator that separates control functions from the data 

functions. These heterogeneous devices follow the scheduling 

of the SDN controller to transmit and process information.  

For easy reference, Table I summarizes the key symbols used 

in this section. 

We assume that there exits 𝑁 regions of mobile devices 𝑀 =
{𝑀1, 𝑀2, … , 𝑀𝑁} within the network. Mobile devices in each 

region are served by an SBS. In this network, the mobile device 

𝑖  in region 𝑗  has a computation-intensive and 

non-decomposable task 𝑇𝑖,𝑗 = {𝑐𝑖,𝑗 , 𝑑𝑖,𝑗 , 𝑡𝑖,𝑗
𝑚𝑎𝑥}  needs to be 

completed. Here 𝑐𝑖,𝑗  is the total number of CPU cycles required 

to accomplish the computation task 𝑇𝑖,𝑗, 𝑑𝑖,𝑗  denotes the input 

data size of computation task 𝑇𝑖,𝑗, 𝑡𝑖,𝑗
𝑚𝑎𝑥 represents the latency 

constraint of completing the computation task 𝑇𝑖,𝑗 . When 

processing a computation task, the mobile device can offload it 

to the MEC server with the consideration of time and energy 

consumption for the purpose of performance improvement. 

That means that computation tasks can be locally processed on 

a mobile device or on the MBS via task offloading. We define 

𝑂𝑖,𝑗 ∈ {0,1} to indicate the computation task processing mode, 

in which 𝑂𝑖,𝑗 = 1 represents the local processing and 𝑂𝑖,𝑗 = 0 

for the edge processing. 

1) Local processing 

We assume that mobile devices have different computation 

capability. The CPU frequency of mobile devices is denoted as 

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙, which is elastic that can be scheduled under the given 

constraints. In such a setting, we can obtain the local processing 

time 𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 as follows. 

𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 =  

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙                                    (2) 

The corresponding energy consumption of a mobile device 

can be calculated as 

𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 = 𝑧(𝐹𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗                          (3) 

where 𝑧  is an energy coefficient depending on the chip 

architecture [21].  

There is a weight factor 𝑤𝑖,𝑗 is used to reflect the tradeoff 

between processing time and energy consumption, which 

allows different weights are selected to meet the demands of 

mobile users in decision making. The overhead of the 

computation task processed locally can be expressed as 

𝑄𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 = 𝑤𝑖,𝑗𝑡𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙 + (1 − 𝑤𝑖,𝑗)𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙              (4) 

Notably, the formulations in (2) and (3) allow the CPU 

frequency of mobile devices to exert influences on both 

processing time and energy consumption. Therefore, we 

consider to schedule the CPU frequency of mobile devices to 

achieve optimal task processing performance, this can be 

supported by using dynamic voltage and frequency scaling 

techniques [19].  

2) Edge processing 

We consider that each mobile user can initiate a request to 

the MEC server to offload the computationally intensive tasks, 

when the local resources of a mobile device cannot satisfy the 

need of the mobile user. The input data can be uploaded to the 

MEC server via the SBS, and the upload expenditure between 

SBS and MEC sever is ignored [22]. The uplink rate 𝑟𝑖,𝑗 

between mobile device and the SBS is calculated as 

𝑟𝑖,𝑗 = 𝐵𝑖,𝑗𝑙𝑜𝑔2(1 + 
𝑃𝑖,𝑗𝐻𝑖,𝑗

∑ ∑ 𝑃𝑚,𝑛𝐻𝑚,𝑛+
𝑀𝑛
𝑚=1

𝑁
𝑛=1,𝑛≠𝑗 𝜎2

)          (5) 

where 𝐵𝑖,𝑗 is the uplink bandwidth and 𝑃𝑖,𝑗 is the transmission 

power, respectively. Moreover, 𝐻𝑖,𝑗  denotes the channel gain 

and 𝜎2 is the noise power. Note that the data transmission of a 

mobile device often suffers from interferences caused by other 

mobile devices in nearby regions. 

 Let 𝐹𝑖,𝑗
𝑀𝐸𝐶 be the CPU frequency of MEC server. We assume 

that the MEC server will process the computation task with 

maximum CPU frequency. Then the total latency of edge 

processing involves data transmission time and edge computing 

time can be given by 

𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

=  
𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶                          (6) 

Meanwhile, the corresponding energy consumption of 

mobile device can be calculated as 

𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

=  
𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗                          (7) 

TABLE I 

KEY SYMBOLS AND DEFINITIONS 

Symbol Definition 

𝑇𝑖,𝑗 the computation task 

𝑐𝑖,𝑗 the total number of CPU cycles required to accomplish the 

computation task 

𝑑𝑖,𝑗 the input data size of computation task 

𝑡𝑖,𝑗
𝑚𝑎𝑥 the latency constraint of completing the computation task 

𝑂𝑖,𝑗 process computation task locally or at the edge 

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the CPU frequency of mobile device 

𝑡𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the local processing time 

𝑧 the energy coefficient depending on the chip architecture 

𝑒𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 the local energy consumption 

𝑤𝑖,𝑗 the weight factor 

𝑄𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙

 the overhead of computation task processed locally 

𝐵𝑖,𝑗 the uplink bandwidth 

𝑃𝑖,𝑗 the transmission power 

𝐻𝑖,𝑗 the channel gain 

𝜎2 the noise power 

𝑟𝑖,𝑗 the uplink rate 

𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

 the total latency of edge processing 

𝐹𝑖,𝑗
𝑀𝐸𝐶 the CPU frequency of MEC server 

𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

 the energy consumption of data transmission 

𝑄𝑖,𝑗
𝑒𝑑𝑔𝑒

 the overhead of the computation task processed at edge 

𝑒𝑖,𝑗
𝑟𝑒𝑠 the residual energy of mobile device 

𝐹𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙 the maximum CPU frequency of mobile device 

𝑃𝑚𝑎𝑥 the maximum transmission power of mobile device 

 



Similarly, the overhead of the computation task processed at 

edge can be expressed as 

𝑄𝑖,𝑗
𝑒𝑑𝑔𝑒

= 𝑤𝑖,𝑗𝑡𝑖,𝑗
𝑒𝑑𝑔𝑒

+ (1 − 𝑤𝑖,𝑗)𝑒𝑖,𝑗
𝑒𝑑𝑔𝑒

              (8) 

For simplicity, the consumption of time and energy of the 

mobile devices receiving the results from MEC server is 

ignored [31], because the size of returned results is usually 

much smaller than the input data size. In addition, the 

formulations in (6) and (7) indicate the transmission power 𝑃𝑖,𝑗 

has an impact on both time and energy consumption as well. By 

adjusting the transmission power, energy saving or delay 

reduction can be achieved.  

3) Problem formulation 

As previously described, we formulate the system model as 

an CTOP that optimizes the tradeoff between processing time 

of computation tasks and energy consumption of mobile 

devices in an MEC network. The total cost minimization 

problem with regard to the task offloading is shown as follows. 

𝐶𝑇𝑂𝑃: 
𝑚𝑖𝑛

𝑂, 𝐹, 𝑃
∑ ∑ {𝑂𝑖,𝑗 [𝑤𝑖,𝑗 (

𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶)

𝑁

𝑗=1

𝑀𝑗

𝑖=1

+ (1 − 𝑤𝑖,𝑗)
𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗]} 

+ ∑ ∑ {(1 − 𝑂𝑖,𝑗) [𝑤𝑖,𝑗

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙  

𝑁

𝑗=1

𝑀𝑗

𝑖=1

+ (1 − 𝑤𝑖,𝑗)𝑧(𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗]}                    (9) 

   s. t.                                                                     

𝐶1: 𝑂𝑖,𝑗（
𝑑𝑖,𝑗

𝑟𝑖,𝑗
+

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑀𝐸𝐶 ） + (1 − 𝑂𝑖,𝑗) 

𝑐𝑖,𝑗

𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 ≤ 𝑡𝑖,𝑗

𝑚𝑎𝑥     (9a) 

𝐶2: 𝑂𝑖,𝑗

𝑑𝑖,𝑗

𝑟𝑖,𝑗
𝑃𝑖,𝑗 + (1 − 𝑂𝑖,𝑗) 𝑧(𝐹𝑖,𝑗

𝑙𝑜𝑐𝑎𝑙)2𝑐𝑖,𝑗 ≤ 𝑒𝑖,𝑗
𝑟𝑒𝑠            (9b) 

𝐶3: 0 < 𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙 ≤ 𝐹𝑚𝑎𝑥

𝑙𝑜𝑐𝑎𝑙                                                           (9c) 

𝐶4: 0 < 𝑃𝑖,𝑗 ≤ 𝑃𝑚𝑎𝑥                                                                 (9d) 

𝐶5: 𝑂𝑖,𝑗 ∈ {0,1}                                                                  (9e) 

where 𝐹𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙  and 𝑃𝑚𝑎𝑥  denote the maximum CPU frequency 

and maximum transmission power of mobile devices, 

respectively. The constraint 𝐶1 guarantees the total processing 

time of a computation task cannot exceed the maximum 

acceptable latency; constraint 𝐶2 indicates that the total energy 

consumption of a mobile device is less than its residual energy; 

constraints 𝐶3  and 𝐶4  restricts the CPU frequency and 

transmission power of mobile devices; 𝐶5 reflects that there are 

only two processing modes for computation tasks. 

The CTOP formulated in this subsection is non-convex and 

NP-hard. The evolutionary algorithm, is a good choice to solve 

the problem. In consideration of the challenge in search 

complexity, we conceive to construct a set of related and 

easy-to-process auxiliary tasks to help solve the CTOP through 

evolutionary multitasking.  

B. Auxiliary Tasks 

For the formulated CTOP, it is hard to obtain a high-quality 

solution directly. This suggests learning from related and cheap 

auxiliary tasks to reduce the difficulty of handling expensive 

and complex target problems. Currently, it is still an open issue 

about how to construct the auxiliary tasks. In [14], the auxiliary 

task has the same objective function as the constrained 

multi-objective problem, but with different constraints. The 

paper [12] used small data proxies to the main target task as the 

auxiliary tasks to quickly optimize for the target large dataset. 

In article [13], the strongly related meme helper-tasks are 

constructed through a multiobjectivization of the original task. 

 
Fig. 1. The system model for task offloading. 
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In this subsection, we attempt to create auxiliary tasks to 

perform quick search, which aims to improve the search 

efficiency for the CTOP through evolutionary multitasking. To 

this end, the auxiliary tasks are constructed to be highly 

correlated to the target problem in order to exploit the potential 

synergy between them with regard to the fitness landscape. In 

multitasking environments, auxiliary tasks are expected to 

provide additional favorable influences to rapidly advance the 

evolutionary search of the target problem at a relatively 

inexpensive computational cost.  

The formulated CTOP includes the searching of task 

offloading decision variables, computing resource allocation 

variables, and transmission resource allocation variables. 

Moreover, it can be seen that the objective function of CTOP 

consists of two parts. The former component is the overhead of 

edge processing while the latter is the overhead of the local 

processing. Note that the task offloading decision can be 

potentially obtained through the analysis of edge processing 

overhead and local processing overhead. Therefore, we 

constructed two types of auxiliary tasks that are formally 

subproblems of the target problem. The motivation for 

constructing them is to find promising resource scheduling 

schemes for the target problem. 

To reduce the local processing overhead of computation 

tasks, the first type of auxiliary tasks that finds a scheduling 

scheme for the CPU frequency of mobile devices, with the goal 

of minimizing the time and energy consumption of mobile 

devices, can be formed as  

𝐶𝑇𝑂𝑃 − 𝐹:
𝑚𝑖𝑛

𝐹
∑[𝑤𝑙,𝑘

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙  + (1 − 𝑤𝑙,𝑘)𝑧(𝐹𝑙,𝑘

𝑙𝑜𝑐𝑎𝑙)
2

𝑐𝑙,𝑘]

𝑀𝑘
′

𝑙=1

 

     (10) 

  s. t.                                                      
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′  ≤ 𝑀𝑘                     (10a) 

𝐶2: 
𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙  ≤ 𝑡𝑙,𝑘

𝑚𝑎𝑥                                           (10b) 

𝐶3: 𝑧(𝐹𝑖,𝑗
𝑙𝑜𝑐𝑎𝑙)2𝑐𝑙,𝑘 ≤ 𝑒𝑙,𝑘

𝑟𝑒𝑠                                 (10c) 

𝐶4: 0 < 𝐹𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 ≤ 𝐹𝑚𝑎𝑥

𝑙𝑜𝑐𝑎𝑙                                  (10d) 

where 𝑘 specifies the search region, 𝑀𝑘
′  is used to control the 

number of mobile devices. In a more general case, the CTOP-F 

can be further simplified depending on the complexity and 

scale of the target problem, especially when a large number of 

mobile devices are connected to the MEC network. If a good 

solution is found for the CTOP-F, then it is likely to be 

beneficial for the target problem as well, since the CTOP-F is 

given a fitness landscape that is positively correlated with the 

target problem. Moreover, the CTOP-F is regarded as a simple 

optimization problem that requires significantly lower 

computation cost than the target problem. In a multitasking 

environment, the CTOP-F is expected to obtain promising 

solutions to assist the efficient optimization of the 

computationally expensive target problem, through knowledge 

transfer from CTOP-F to the target problem.  

Another type of auxiliary tasks with the goal to minimize the 

edge processing overhead of computation tasks by scheduling 

the transmission power of mobile devices, can be represented 

as 

𝐶𝑇𝑂𝑃 − 𝑃:
𝑚𝑖𝑛

𝑃
∑[𝑤𝑙,𝑘  (

𝑑𝑙,𝑘

𝑟𝑙,𝑘
+

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑀𝐸𝐶)

𝑀𝑘
′

𝑙=1

+ (1 − 𝑤𝑙,𝑘)
𝑑𝑙,𝑘

𝑟𝑙,𝑘
𝑃𝑙,𝑘] 

   (11) 

   s. t.   
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′  ≤ 𝑀𝑘                            (11a) 

𝐶2: 
𝑑𝑙,𝑘

𝑟𝑙,𝑘
+

𝑐𝑙,𝑘

𝐹𝑙,𝑘
𝑀𝐸𝐶  ≤ 𝑡𝑙,𝑘

𝑚𝑎𝑥                                      (11b) 

𝐶3: 
𝑑𝑙,𝑘

𝑟𝑙,𝑘
𝑃𝑙,𝑘 ≤ 𝑒𝑙,𝑘

𝑟𝑒𝑠                                                 (11c) 

𝐶4: 0 < 𝑃𝑙,𝑘 ≤ 𝑃𝑚𝑎𝑥                                               (11d) 

Correspondingly, the solving of CTOP-P providing 

knowledge related to edge processing for the target problem. It 

is worth noting that the relationship between auxiliary tasks and 

target problem. In a single multitasking setting, the CTOP-F 

and the CTOP-P have similar fitness landscapes to the target 

problem, respectively. Meanwhile, the CTOP-F and the 

CTOP-P complement each other. For the same purpose but 

with different motivations, the auxiliary tasks can guide the 

solver to travel different areas of search space. The knowledge 

transfer can be carried out to promote the efficient search for 

the target problem. Most importantly, the insights offered by 

optimizing the local processing overhead and edge processing 

overhead help to make a task offloading decision. The CTOP-O 

can be defined based on the CTOP-F and CTOP-P as follows. 

𝐶𝑇𝑂𝑃 − 𝑂: 
𝑚𝑖𝑛

𝑂
∑[𝑂𝑙,𝑘𝑄𝑙,𝑘

𝑒𝑑𝑔𝑒
+ (1 − 𝑂𝑙,𝑘)𝑄𝑙,𝑘

𝑙𝑜𝑐𝑎𝑙]

𝑀𝑘
′

𝑙=1

     (12) 

s. t.                                                      
𝐶1: 𝑘 ∈ {1,2, … , 𝑁}, 𝑀𝑘

′  ≤ 𝑀𝑘                     (12a) 

𝐶2: 𝑂𝑖,𝑗 ∈ {0,1}                                                 (12b) 

Making a task offloading decision needs to analyze the 

overheads of local processing and edge processing. In general, 

mobile users may prefer to choose the way with less overhead 

to process their computation tasks. Therefore, the searching of 

task offloading decision variables can be potentially obtained 

through CTOP-F and CTOP-P. The 𝑄𝑙,𝑘
𝑒𝑑𝑔𝑒

 denotes the edge 

processing overhead obtain by CTOP-P and the 𝑄𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙 denotes 

the local processing overhead obtained by CTOP-F. If 𝑄𝑙,𝑘
𝑒𝑑𝑔𝑒

<

𝑄𝑙,𝑘
𝑙𝑜𝑐𝑎𝑙, then 𝑂𝑙,𝑘 = 1, otherwise 𝑂𝑙,𝑘 = 0. The task offloading 

decision obtained by CTOP-O is helpful for the target problem 

to decide whether the computation task is to be offloaded or 

processed locally.  

As described above, we expect that the introduction of 

related and cheap auxiliary tasks in MTO will result in good 

scalability. It is critical to transfer knowledge from auxiliary 

tasks to the target problem to promote its efficient search. 

Because auxiliary tasks have fewer dimensions than the target 

problem, they consume less solution evaluation resource than 

the target problem. When the searching for auxiliary tasks can 

provide useful information to the target problem, i.e., the 

transfer of knowledge is effective, the search process can be 



considered cheaper comparing to directly addressing such 

costly target problem. 

IV. THE PROPOSED METHOD 

A. Multitasking Framework for CTOP 

The MTO framework of the proposed method is shown in 

Fig. 2. Here, the formulated CTOP is regarded as the target 

problem in the multitask evolution setting, the ultimate goal of 

a multitasking solver is to find the optimal solution for the 

target problem. The auxiliary tasks proposed in Section III are 

constructed to help improve the search of the target problem, 

that is reflected on using simple and related auxiliary tasks to 

efficiently assist costly target problems for cheaper and faster 

evolutionary iteration, thereby reducing computational cost and 

achieving convergence speedup. In particular, the evolved 

auxiliary tasks have complementary evolutionary trials to each 

other. The presence of different but complementary influencing 

factors may shape a favorable search guidance for the evolution 

of the target problem. 

Noted that the component tasks in the multitask setting have 

different search spaces [1]. It is an effective means to 

encompass each of the individual search spaces for different 

component tasks into a unified search space. In other words, the 

candidate solutions corresponding to different component tasks 

are encoded into a vector with the same dimensionality. In such 

a condition, a shared pool of genetic material can be used to 

cover the genetic building blocks corresponding to different 

component tasks, thus facilitating the discovery and utilization 

of available genetic material in a seamless way. Furthermore, 

based on the consideration of commonalities and differences 

between the auxiliary tasks and the target problem, we divide 

the vectors encoded in a unified representation corresponding 

to the auxiliary tasks into source decision variables and 

extended decision variables. The source decision variables 

correspond to the solution of the auxiliary task, while the 

extended decision variables correspond to the additional part.  

In a multitasking environment, the constructed auxiliary 

tasks influence the search trajectory of target problem mainly 

through knowledge transfer. For effective multitasking, it is 

crucial to look for useful evolutionary information.  Many 

related approaches discussed individual-based knowledge 

transfer and inter-task crossover knowledge transfer. In this 

framework, one of our main contributions is the proposal of a 

novel segmented transfer strategy which facilitates the 

utilization of useful evolutionary information in unified search 

space from auxiliary tasks. If the knowledge transfer is 

effective, the source decision variables seem to be better suited 

to enhance local search and accelerate convergence, while the 

extended decision variables focus on maintaining diversity and 

improving global search. 

Although the introduction of auxiliary tasks helps to reduce 

the difficulty of evolutionary search, they also call for 

additional computing resources. Different from previous 

studies that tended to treat each component task equally and 

allocate the same level of computing resources to them, we 

propose to generate different auxiliary tasks at different 

evolutionary stages. Due to the simple and low-dimension 

nature of the auxiliary tasks, only a small number of computing 

resources are needed.  To use computational resources 

reasonably and improve the flexibility of multitasking, the 

allocation of resources is achieved through the update of 

auxiliary tasks. When an auxiliary task cannot provide more 

knowledge for evolutionary search of CTOP, a new auxiliary 

task is generated. By dynamically updating auxiliary tasks and 

reasonably transferring knowledge from them, the efficiency of 

multitasking can be significantly improved.  

Considering possible transfer conflicts between auxiliary 

tasks, where positive and negative transfer may simultaneously 

exist. Rational filtering for them during the transfer process can 

retain useful information that facilitates evolutionary search. In 

addition, adaptive updating of auxiliary tasks in a multitasking 

environment also can effectively reduce the incidence of 

transfer conflicts.  

B. Multitask Evolutionary Task Offloading Algorithm 

In this subsection, we intend to solve the CTOP by using the 

aforementioned EMT framework. We first transform the CTOP 

into a multi-task optimization problem by introducing the 

constructed auxiliary tasks, and then design an effective EMT 

  
Fig. 2.  The illustration of solving CTOP with MTO. 
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algorithm to search for solutions. As shown in Algorithm 1, the 

proposed algorithm, namely multitask evolutionary task 

offloading algorithm (METOA), is described in detail. At the 

beginning of the iteration, a target population is initialized for 

the CTOP, in which each candidate individual corresponds to a 

solution of CTOP in the unified search space. Then, there are 

two different auxiliary tasks, which are generated according to 

the CTOP-F and the CTOP-P described in Section III. In 

METOA, each type of auxiliary tasks is offered an auxiliary 

population that works in parallel in the iteration process. To 

balance the exploration and exploitation of auxiliary 

populations and target population, as well as to rationalize the 

complementarity between auxiliary populations, each type of 

auxiliary task generates only one component task at a time to 

participate in the evolutionary in multitasking environment.  

During the procedure of evolution, the candidate individuals 

in the auxiliary populations perform explicit knowledge 

transfer across tasks by Algorithm 2. The segmented 

knowledge transfer screen useful evolutionary information 

from different auxiliary tasks, with the aim of increasing the 

diversity of the target population and improving the fitness of 

candidate individuals in target population. In the offspring 

production cycle, the target population is uniformly divided 

into two subpopulations, then each of which produces offspring 

with an auxiliary population based on the standard evolutionary 

operators. The assortative mating and vertical cultural 

transmission [1] implicitly conduct genetic transfer across 

domains, where genetic material created for one component 

task can be copied into chromosomes associated with other 

component tasks. After offspring individuals are evaluated, 

elite candidate individuals are selected to form the next 

generation of the populations. Finally, considering that the 

auxiliary tasks are easily solved, the corresponding populations 

converge and diverge quickly, sometimes with stagnation. 

Therefore, the auxiliary tasks are updated by Algorithm 3, 

which dynamically generates auxiliary tasks that lead to 

different search biases in a multitasking environment, while 

rationally allocating computational resources to different 

auxiliary tasks.  

Fig. 3 shows an example of proposed METOA with 

segmented knowledge transfer and auxiliary tasks update. 

Although the proposed algorithm is similar to the 

co-evolutionary algorithm in terms of the utilization of multiple 

populations, there are several essential differences between 

them. In co-evolutionary algorithm, subproblems are solved 

independently in subpopulations and the complete solution is 

obtained by combining representative individuals of each 

subpopulation. In contrast, the METOA is based on the 

framework of evolutionary multitasking, where the individuals 

of auxiliary tasks help the target problem to evolve search 

through knowledge transfer. The source and extended decision 

variables are available as different knowledge and the auxiliary 

tasks can be updated according to the search status.  

C. Segmented knowledge transfer 

The knowledge transfer is an important issue in evolutionary 

multitasking and a promising way to improve the problem 

solving for the CTOP. Unlike previous works that focused on 

individual-based knowledge transfer and inter-task crossover 

knowledge transfer, the proposed algorithm allows for 

Algorithm 1:  Pseudocode of METOA 

Input:  

Total population size - 𝑁𝑃 

Target problem CTOP – 𝑇𝐶 

Output:  

The optimized solution of CTOP 

1. Set  𝑡 = 1 

2. Initialize target population 𝐶𝑡 for 𝑇𝐶 of size 𝑁𝑃/2 

3. Evaluate candidate individuals in  𝐶𝑡 

4. Generate auxiliary tasks 𝑇𝐴 = {𝑇𝐴𝑗}𝑗=1
2  based on 

CTOP-F and CTOP-P in Eq. (10-11), respectively 

5. Initialize auxiliary populations 𝑃𝑡 = {𝑃𝑗
𝑡}𝑗=1

2  for 𝑇𝐴  of 

size 𝑁𝑃/4, respectively 

6. Evaluate candidate individuals in 𝑃𝑡 

7. While stopping criteria are not satisfied do 

8.   Segmented knowledge transfer via Algorithm 2 

9.   Uniformly divide the 𝐶𝑡 into {𝐶𝑗
𝑡}𝑗=1

2  

10.   For 𝑗 = 1 to 2 do 

11.     Perform assortative mating on 𝐶𝑗
𝑡 ∪ 𝑃𝑗

𝑡  to generate 

offspring 𝐶𝑃𝑗
𝑡 

12.     Determine the imitation task of offspring in 𝐶𝑃𝑗
𝑡 based 

on vertical cultural transmission 

13.     Evaluate the candidate individuals in 𝐶𝑃𝑗
𝑡 

14.   End for 

15.   Carry out elitist selection to form 𝐶𝑡+1 , 𝑃𝑡+1 =
{𝑃𝑗

𝑡+1}𝑗=1
2  

16.   Update auxiliary tasks via Algorithm 3 

17.   Set 𝑡 = 𝑡 + 1 

18. End while 

 

 
  

Fig. 3.  The example of proposed METOA with segmented knowledge transfer and auxiliary tasks update. 
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knowledge transfer in segments. In the unified search space, the 

candidate individuals corresponding to the auxiliary tasks 

transfer knowledge to candidate individuals in target 

population based on source and extended decision variables. 

As shown in Algorithm 2, each auxiliary population 

randomly provides a candidate individual for optimizing the 

selected candidate individual in target population. Noted that 

the decision variables in 𝑝𝑗 include source decision variables 

𝑝𝑗
𝑠  and extended decision variables 𝑝𝑗

𝑒 . For source decision 

variables of each candidate individual, they simultaneously 

replace the corresponding decision variables of the selected 

candidate individual 𝑐 to generate an intermediate individual 
𝑐(𝑝𝑗

𝑠) . If positive transfer has occurred, this intermediate 

individual is retained in the target population. In addition, the 

extended decision variables need to be screened to facilitate 

positive transfer. For the purpose of increasing the population 

diversity, the extended decision variables are first extracted to 

generate a mutation vector 𝑉𝑒, as shown below.  

𝑉𝑒 = 𝑐𝑒 + 𝛾 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑝2
𝑒 − 𝑝1

𝑒)                    (13) 

where 𝛾  is the scaling factor, 𝑝1
𝑒  and 𝑝2

𝑒  are the extended 

decision variables of candidate individuals 𝑝1 and 𝑝2 , 

respectively. For each element in 𝑉𝑒, the ones that are verified 

to be beneficial will be transferred to the selected candidate 

individual 𝑐 . To avoid high function evaluation cost, the 

Algorithm 2 performs the search for only one candidate 

individual in each iteration.  

Since auxiliary tasks and target problem have locally similar 

fitness landscapes, such that the transfer of source decision 

variables would be likely to perform fast local search for target 

problem. Meanwhile, the transfer of extended decision 

variables from promising candidate individuals in auxiliary 

tasks facilitates the search of the target problem.   

D. Auxiliary tasks update 

The proposed algorithm allows the dynamic exploitation of 

auxiliary tasks to facilitate the search of the target problem. 

Since auxiliary tasks are easily handled, the auxiliary 

populations may converge or stagnate after several generations 

of evolution. In such a condition, it is difficult for the target 

population to obtain useful evolutionary information from the 

auxiliary populations, while unnecessary evaluation resources 

may be wasted on auxiliary tasks that have already diverged. 

Therefore, the generation of different auxiliary tasks in the 

evolutionary process makes full use of limited evaluation 

resources to facilitate cross-domain search. As shown in 

Algorithm 3, the degree of change in auxiliary populations is 

used to determine whether they need to be updated. During the 

evolutionary iteration, auxiliary populations are constantly 

changing and eventually stabilize. Based on the fitness of 

population members, the change in the auxiliary population can 

be observed according to the following equation. 

𝑅𝑀𝑆𝐸(𝑃𝑗
𝑡, 𝑃𝑗

𝑡+1)  = √
1

𝑁𝑃/4
∑ (𝑓𝑖𝑡(𝑝𝑖)𝑗

𝑡 − 𝑓𝑖𝑡(𝑝𝑖)𝑗
𝑡+1)2𝑁𝑃/4

𝑖=1  

(14) 

The change between 𝑃𝑗
𝑡  and 𝑃𝑗

𝑡+1  is measured by the 

individual fitness 𝑓𝑖𝑡(𝑝𝑖)𝑗
𝑡  and 𝑓𝑖𝑡(𝑝𝑖)𝑗

𝑡+1. If the 𝜎𝑗 is less than 

a given convergence coefficient 𝛽, then new auxiliary tasks 

will be generated and given evaluation resources to participate 

in evolution. The purpose of auxiliary task update is to provide 

diverse knowledge of local optimization to guide the 

evolutionary search of the target problem. The new auxiliary 

task is generated by updating the parameters 𝑘  and 𝑀𝑘
′  in 

CTOP-F or CTOP. Each update of the auxiliary task indicates 

that the population of candidate individuals will shift to search 

for promising solutions for 𝑀𝑘
′  mobile devices in region 𝑘 , 

thus achieving quick local optimization.   

V. EXPERIMENT STUDIES 

A. Experimental Setup 

The experiment studies were conducted based on the system 

model presented in Section III. We consider a simulated MEC 

Algorithm 2:  Segmented knowledge transfer 

Input:  

Target population - 𝐶𝑡 

Auxiliary populations - 𝑃𝑡 

Scaling factor - 𝛾 

Output:  

The improved candidate individual of target population 

1. Randomly select candidate individuals 𝑝1, 𝑝2 from 

𝑃𝑡 = {𝑃𝑗
𝑡}𝑗=1

2 , respectively 

2. Randomly select a candidate individual 𝑐 from 𝐶𝑡 

3. For 𝑗 = 1 to 2 do 

4.   Transfer the 𝑝𝑗
𝑠 to the candidate individual 𝑐 to obtain 

𝑐(𝑝𝑗
𝑠) 

5.   If 𝑐(𝑝𝑗
𝑠) better than 𝑐 then 

6.     𝑐(𝑝𝑗
𝑠) → 𝑐 

7.   End if 

8. End for 

9. Extract extended decision variables 𝑝1
𝑒 , 𝑝2

𝑒 to generate 

mutation vector 𝑉𝑒 based on Eq. (13) 

10. For each 𝑉𝑖
𝑒 in 𝑉𝑒 do 

11.   Transfer the 𝑉𝑖
𝑒 to the candidate individual 𝑐  to 

obtain 𝑐(𝑉𝑖
𝑒) 

12.   If 𝑐(𝑉𝑖
𝑒) better than 𝑐 then 

13.     𝑐(𝑉𝑖
𝑒) → 𝑐 

14.   End if 

15. End for 

Algorithm 3:  Auxiliary task update 

Input:  

Auxiliary populations at generation 𝑡 - 𝑃𝑡 

Auxiliary populations at generation 𝑡 + 1 - 𝑃𝑡+1 

Convergence coefficient – 𝛽 

Output:  

The updated auxiliary tasks 

1. For 𝑗 = 1 to 2 do 

2.   Compute 𝜎𝑗 = 𝑅𝑆𝑀𝐸(𝑃𝑗
𝑡, 𝑃𝑗

𝑡+1) based on Eq. (14) 

3.   If (𝜎𝑗 ≤ 𝛽) then 

4.     Generate new auxiliary task 𝑇𝐴𝑗 based on Eq. (10-11) 

5.     Initialize auxiliary population 𝑃𝑗
𝑡 for 𝑇𝐴𝑗 

6.     Evaluate candidate individuals in 𝑃𝑗
𝑡 

7.   End if 
8. End for 

 

 



network for task offloading, where 𝑁  SBSs are randomly 

distributed in a 500 m ∗ 500 m area. There is an MBS located in 

the center of the MEC network, which is equipped with a MEC 

server. In the default settings, the number of SBSs is set to 10 

and the computation frequency of the MEC server is 4 GHz. 

There are 100 mobile devices uniformly scattered over the 

MEC network, each mobile device has a computation task to be 

processed. The data size and the number of required CPU 

cycles of the computation task are randomly generated in the 

range of [400, 1200] KB and [0.1 ∗ 109, 1 ∗ 109]  cycles, 

respectively. The maximum CPU frequency and the maximum 

transmission power of mobile devices are 1 GHz and 23 dBm. 

respectively. The noise power is set to -100 dBm and the uplink 

bandwidth is 2 MHz. Unless otherwise indicated, when 

discussing the effect of a parameter on the performance of the 

system model, the value of this parameter is variable while all 

other parameters are set as default values.  

To demonstrate the effectiveness of the proposed algorithm 

for solving the CTOP, we compare the METOA with several 

state-of-the-art multitask algorithms as well as the single-task 

algorithms. The well-known multitask algorithms, that are, 

MFEA [1] and MFEA-II [2], are considered as the baseline 

algorithms, for using auxiliary tasks to solve CTOP. To verify 

the benefits of introducing auxiliary task for optimization, we 

further implemented two other variants of MFEA, namely are 

MFEA-F and MFEA-P, which share the same replication as 

MFEA, but with different settings of auxiliary task. 

Specifically, MFEA-F and MFEA-P only involve auxiliary 

tasks CTOP-F and CTOP-P, respectively. For the same reason, 

METOA-F, METOA-P, MFEA-II-F and MFEA-II-P are also 

considered for discussion. In addition, four representative 

single-task algorithms, including HGPCA [35], PSO [36], DE 

[37] and GA [38], are involved in the comparison with METOA. 

The default settings of the compared algorithms are given as 

follows. 

(1) Population size: 𝑁𝑃 = 100. 

(2) Maximum function evaluations: 𝑚𝑎𝑥𝐹𝐸𝑠 = 4000. 

(3) Independent number of runs: 𝑅𝑢𝑛𝑠 = 20. 

(4) The parameters for MFEA: Crossover probability 𝑝𝑐 = 1, 

mutation probability 𝑝𝑚 = 1/𝐷 , and random mating 

probability 𝑟𝑚𝑝 = 0.3. 

(5) The parameters for MFEA-II: Crossover probability 𝑝𝑐 =
1 , mutation probability 𝑝𝑚 = 1/𝐷 , and random mating 

probability based on online 𝑟𝑚𝑝 learning. 

(6) The parameters for the proposed METOA: Scaling factor 

𝛾 = 0.5 , convergence coefficient 𝛽 = 0.1 , crossover 

probability 𝑝𝑐 = 1, and mutation probability 𝑝𝑚 = 1/𝐷. 

(7) The parameters for the HGPCA: Crossover probability 

𝑝𝑐 = 1, mutation probability 𝑝𝑚 = 1/𝐷, Inertia weight 𝑤𝐼  =
0.4, acceleration instants  𝑐1 = 𝑐2 = 1.5. 

(8) The parameters for the PSO: Inertia weight wI  = 0.6, 

learn factors  𝑐1 = 𝑐2 = 2. 

(9) The parameters for the DE: Mutation factor 𝐹 = 0.9 , 

crossover probability  𝑐𝑅 = 0.8. 

(10) The parameters for the GA: Crossover probability 𝑝𝑐 =
1, mutation probability 𝑝𝑚 = 1/𝐷. 

Note that in the numerical analysis, the Wilcoxon rank sum 

test at a significance level of 0.05 is performed to evaluate the 

contrast results. The symbols “+” or “-” indicates that the 

corresponding algorithm has a better or worse average 

performance than METOA, respectively. The symbol “≈” 

denotes that the corresponding algorithm and METOA have a 

similar average performance.  

B. Multitask Algorithms with Auxiliary Tasks 

Since the introduction of auxiliary tasks can bring efficient 

multitasking for handling complex optimization problems, we 

analyze and compare the search performances of the MFEA, 

MFEA-II and the proposed METOA based on different 

auxiliary tasks in optimizing CTOP. 

As shown in Fig. 4, an overview of the convergence 

performance of each algorithm during the evolutionary process 

is provided. There are obvious differences in the total cost of 

task offloading with different algorithms. It can be observed 

from Fig. 4 that the convergence performance of METOA 

outperforms all other compared algorithms. Meanwhile, the 

METOA, MFEA-II and MFEA are able to achieve better 

convergence performance compared to their variants, 

respectively. This result, as expected, demonstrates the 

knowledge transfer from auxiliary tasks in MTO does 

contribute to convergence acceleration and solution finding. 

When compared against the MFEA-F and the MFEA-P, the 

MFEA obtains better results. This is mainly due to the fact that 

MFEA employs both auxiliary tasks CTOP-F and CTOP-P, 

 

 

Fig. 4.  The convergence trends of METOA, METOA-F, METOA-P, 

MFEA, MFEA-F, MFEA-P, MFEA-II, MFEA-II-F and MFEA-II-P.  
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which possess the advantages of strong local search. Similarly, 

the MFEA-II has been observed to outperform the MFEA-II-F 

and the MFEA-II-P. As mentioned before, the only difference 

between the algorithms and their corresponding variants is the 

configuration of the auxiliary tasks, the obtained results again 

confirmed the effectiveness of introducing auxiliary tasks in 

solving CTOP.  

It was noticed that METOA and its variants (METOA-F and 

METOA-P) obtained better results than MFEA and their 

variants (MFEA-F and MFEA-P), respectively. Moreover, the 

MFEA-II and its variants (MFEA-II-F and MFEA-II-P) also 

obtained better results than MFEA and their variants (MFEA-F 

and MFEA-P), respectively. The potential reason is the gap in 

the efficiency of the genetic transfer. Although cross-task 

genetic transfer occurred during the evolution of MFEA, its 

vulnerability to negative transfer makes them difficult to 

enhance the search. The MFEA-II improves the process of 

genetic transfer based on online RMP learning. In addition, 

METOA, METOA-F and METOA-P are good at obtaining 

positive transfer for search. Specifically, METOA and its 

variants (METOA-F and METOA-P) can quickly optimize the 

total cost of the CTOP in the early stages of evolution. On the 

one hand, cheap auxiliary tasks are optimized rapidly due to 

their simple nature. On the other hand, the proposed segmented 

knowledge transfer enhances the local search capability using 

the source decision variables learned by the optimized auxiliary 

task, while improving the global search capability using the 

extended decision variables. In the subsequent evolutionary 

search, the auxiliary tasks are updated adaptively. With 

beneficial cross-domain transfer of high-quality genetic 

material, it tends to guide the cost function of CTOP converge 

smoothly around the global optimum. 

Table II shows the mean value and standard deviation of the 

total cost on CTOP instances of all the multitask comparison 

algorithms according to 20 independent runs, where the best 

result is highlighted. 

The proposed METOA has been observed to outperform all 

other algorithms for different number of function evaluations 

on almost all CTOP instances. In particular, the proposed 

METOA achieves better solution quality when the number of 

mobile devices increases, compared to MFEA and MFEA-II, 

on CTOP instances with different numbers of mobile devices. 

Moreover, it also can be observed that, the proposed METOA 

can maintain excellent performance when the computational 

resources (function evaluations) are constrained. For example, 

for an CTOP instance with 40 mobile devices, the proposed 

METOA with 2000 function evaluations achieves competitive 

result against MFEA with 4000 function evaluations. As shown 

in Fig. 5, we plot the total cost versus the number of mobile 

devices. This further validates that the proposed METOA is 

capable of adaptively optimizing task offloading as the number 

of mobile devices rise. 

In general, it can be observed from the obtained results above 

that introducing cheaper auxiliary tasks and exploiting 

knowledge from there to speed up the problem solving of 

CTOP not only improves the search of multitasking, but also 

enhances the scalability of the solver to cope with large-scale 

problems.  

C. Comparison with Single-Task Algorithms 

For a comprehensive performance evaluation, we also discuss 

the performance of the proposed METOA contrast to the 

single-tasking algorithms in different CTOP instances.  

Fig. 6 shows the curves of the total cost on CTOP instance 

based on 20 independent runs of METOA, HGPCA, PSO, DE, 

and GA with 4000 function evaluations. The results show that 

the proposed METOA has better convergence performance 

than HGPCA, PSO, DE, and GA during the procedure of 

evolution. We noted that although the PSO converges faster 

than METOA, HGPCA, DE, and GA in in the early stages of 

evolution, it soon plunges into a local optimum. This indicates 

that METOA can effectively overcome the issue of local 

optimum, and achieves a good balance between convergence 

and diversity. The reason may be that the generated auxiliary 

tasks contribute to obtain a good diversity of the target problem. 

When the search is trapped in a local optimum, the update of 

the auxiliary tasks can drive the exploitation of other areas of 

the search space. Table III shows the mean value, best value 

and standard deviation of total cost of METOA, HGPCA, PSO, 

DE, and GA on CTOP instances with different numbers of 

mobile devices and SBSs, in which the best results are marked 

in bold. In the multiple independent runs, it can be seen that the 

best solution found by the proposed algorithm is better than 

 

Fig. 6.  The convergence trends of METOA, HGPCA, PSO, DE and GA. 
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Fig. 5.  The total cost of task offloading under different number of mobile 

devices. 
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other algorithms, which demonstrates the advantage of the 

proposed algorithm to find high-quality solutions. The results 

show that the transfer of source decision variables can 

accelerate the convergence of the algorithm due to the high 

similarity between the auxiliary task and the target problem. 

Meanwhile, the transfer of the extended decision variables can 

improve the outcomes of the algorithm that terminates 

prematurely due to local optimum.  Moreover, it can be 

Table II 

 THE AVERAGE VALUE AND STANDARD DEVIATION OF TOTAL COST OF TASK OFFLOADING OBTAINED BY METOA, METOA-F, 

METOA-P, MFEA, MFEA-F and MFEA-P ON CTOP INSTANCES, WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. 

Algorithms Function Evaluations 
Number of Mobile Devices 

40 60 80 100 

METOA 

2000 
1.2094e+01 
(2.3807e-01) 

2.4848e+01 
(7.0865e-01) 

3.7769e+01 

(1.1458e+00) 

5.5161e+01 

(9.2405e-01) 

4000 
1.1758e+01 
(1.7024e-01) 

2.3478e+01 
(3.1101e-01) 

3.6830e+01 

(5.9951e-01) 
5.3982e+01 

(1.5661e+00) 

6000 
1.1583e+01 
(1.3299e-01) 

2.3262e+01 
(3.5270e-01) 

3.5975e+01 

(7.0538e-01) 
5.2318e+01 

(1.0289e+00) 

METOA-F 

2000 
1.2632e+01 - 
(2.7213e-01) 

2.5291e+01 ≈ 
(4.3374e-01) 

3.9421e+01 - 

(1.1589e+00) 

5.7958e+01 - 

(1.2971e+00) 

4000 
1.2085e+01 - 
(1.3483e-01) 

2.4615e+01 - 
(4.0855e-01) 

3.9164e+01 - 
(1.1208e+00) 

5.6966e+01 - 
(1.6780e+00) 

6000 
1.2088e+01 - 
(1.3612e-01) 

2.4252e+01 - 
(2.8128e-01) 

3.7417e+01 - 
(7.4720e-01) 

5.5114e+01 - 
(1.5006e+00) 

METOA-P 

2000 
1.2543e+01 - 
(2.3688e-01) 

2.5679e+01 - 
(7.8266e-01) 

4.0386e+01 - 

(9.7280e-01) 

5.8896e+01 - 

(1.4340e+00) 

4000 
1.2250e+01 - 
(2.0732e-01) 

2.4932e+01 - 
(5.7432e-01) 

3.9039e+01 - 
(8.7909e-01) 

5.7244e+01 - 
(1.6063e+00) 

6000 
1.1996e+01 - 
(1.7837e-01) 

2.4337e+01 - 
(4.7890e-01) 

3.7790e+01 - 
(8.6645e-01) 

5.5362e+01 - 
(1.4026e+00) 

MFEA 

2000 
1.2442e+01 - 
(1.0352e-01) 

2.5997e+01 - 
(1.9544e-01) 

4.1817e+01 - 

(5.3147e-01) 

6.2012e+01 - 

(9.5408e-01) 

4000 
1.2014e+01 - 
(9.7236e-02) 

2.4826e+01 - 
(3.0732e-01) 

3.9639e+01 - 

(6.8410e-01) 

5.9165e+01 - 

(7.8502e-01) 

6000 
1.1779e+01 - 
(1.1172e-01) 

2.4015e+01 - 
(2.6456e-01) 

3.8123e+01 - 
(3.7728e-01) 

5.6969e+01 - 
(8.9715e-01) 

MFEA-F 

2000 
1.2568e+01 - 
(7.5329e-02) 

2.6085e+01 - 
(3.9408e-01) 

4.2190e+01 - 

(5.3363e-01) 

6.2059e+01 - 

(1.0260e+00) 

4000 
1.2128e+01 - 
(1.1772e-01) 

2.5017e+01 - 
(2.5685e-01) 

4.0124e+01 - 
(6.2806e-01) 

5.9716e+01 - 
(7.0933e-01) 

6000 
1.1943e+01 - 
(1.2160e-01) 

2.4329e+01 - 
(3.1334e-01) 

3.8809e+01 - 
(4.5461e-01) 

5.7632e+01 - 
(5.9805e-01) 

MFEA-P 

2000 
1.2539e+01 - 
(2.1739e-01) 

2.6207e+01 - 
(3.9268e-01) 

4.2120e+01 - 

(8.2937e-01) 

6.2591e+01 - 

(5.1515e-01) 

4000 
1.2128e+01 - 
(1.2327e-01) 

2.5015e+01 - 
(1.6712e-01) 

4.0271e+01 - 
(4.8329e-01) 

5.9860e+01 - 
(8.2737e-01) 

6000 
1.1883e+01 - 
(1.0490e-01) 

2.4433e+01 - 
(2.4128e-01) 

3.8689e+01 - 
(3.5247e-01) 

5.7996e+01 - 
(8.6785e-01) 

MFEA-II 

2000 
1.2329e+01 - 
(1.2629e-01) 

2.5627e+01 - 
(2.4021e-01) 

4.1332e+01 - 
(7.4524e-01) 

6.0956e+01 - 
(6.6838e-01) 

4000 
1.1857e+01 ≈ 
(1.1299e-01) 

2.4570e+01 - 
(2.6410e-01) 

3.8896e+01 - 
(5.3974e-01) 

5.7982e+01 - 
(9.9825e-01) 

6000 
1.1636e+01 ≈ 
(5.7249e-02) 

2.3674e+01 - 
(2.9410e-01) 

3.7797e+01 - 
(2.7983e-01) 

5.6218e+01 - 
(7.1525e-01) 

MFEA-II-F 

2000 
1.2504e+01 - 
(1.4705e-01) 

2.6151e+01 - 
(2.3974e-01) 

4.1752e+01 - 
(4.7920e-01) 

6.2054e+01 - 
(5.6797e-01) 

4000 
1.2061e+01 - 
(1.4016e-01) 

2.4908e+01 - 
(2.4502e-01) 

3.9836e+01 - 
(3.9772e-01) 

5.9085e+01 - 
(6.9965e-01) 

6000 
1.1761e+01 - 
(1.2547e-01) 

2.4074e+01 - 
(2.3342e-01) 

3.8425e+01 - 
(4.3768e-01) 

5.7138e+01 - 
(5.0945e-01) 

MFEA-II-P 

2000 
1.2524e+01 - 
(4.7692e-02) 

2.6249e+01 - 
(2.7793e-01) 

4.1481e+01 - 
(4.0246e-01) 

6.2283e+01 - 
(6.5650e-01) 

4000 
1.2100e+01 - 
(9.5371e-02) 

2.4968e+01 - 
(1.7748e-01) 

3.9877e+01 - 
(5.9537e-01) 

5.9119e+01 - 
(5.2419e-01) 

6000 
1.1803e+01 - 
(1.1301e-01) 

2.4150e+01 - 
(1.4334e-01) 

3.8709e+01 - 
(3.6382e-01) 

5.6970e+01 - 
(3.9182e-01) 

 



observed that the proposed METOA obtains a better average 

performance on most CTOP instances. Expectedly, the 

obtained average total cost of all the algorithms increases as 

more mobile devices are served. Meanwhile, with an increasing 

number of SBSs, the higher average total cost can be caused by 

all the algorithms because of the increased interferences the 

mobile device suffered. When the number of mobile devices 

and SBSs is small, we can see that the PSO achieves better 

results than METOA, HGPCA, DE and GA. Although the 

METOA achieves slightly lower results than PSO, it 

outperforms HGPCA, DE and GA on most of the CTOP 

instances. Nevertheless, we can see from Fig. 7 that, the 

Table III 

 THE AVERAGE VALUE, BEST VALUE AND STANDARD DEVIATION OF TOTAL COST OF TASK OFFLOADING OBTAINED BY METOA, 

HGPCA, PSO, DE and GA ON CTOP INSTANCES, WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. 

Number of Mobile Devices Number of SBS 
Algorithms 

METOA HGPCA PSO DE GA 

40 

5 
5.2213e+00  
5.1988e+00 
(1.7816e-02) 

5.2603e+00 –  
5.2300e+00 
(1.8750e-02) 

5.2024e+00 + 
5.1758e+00 
(1.9942e-02) 

5.3713e+00 – 

5.3396e+00 

(2.4659e-02) 

5.3081e+00 – 

5.2786e+00 

(1.7786e-02) 

10 
1.1702e+01 
1.1446e+01 
(1.4386e-01) 

1.2205e+01 – 
1.2007e+01 
(1.2952e-01) 

1.1883e+01 ≈ 
1.1556e+01 
(2.4559e-01) 

1.2617e+01 – 
1.2292e+01 
(1.4717e-01) 

1.2420e+01 – 
1.2271e+01 
(9.4962e-02) 

15 
3.1767e+01 
3.0907e+01 
(6.2586e-01) 

3.6878e+01 – 
3.6318e+01 
(5.7907e-01) 

3.9056e+01 – 
3.6384e+01 

(2.0996e+00) 

3.4393e+01 – 
3.2594e+01 
(8.3541e-01) 

3.8338e+01 – 
3.7646e+01 
(4.0270e-01) 

60 

5 
9.2638e+00 
9.1974e+00 
(4.3654e-02) 

9.3892e+00 – 
9.3068e+00 
(5.8511e-02) 

9.1871e+00 + 
9.1599e+00 
(2.0298e-02) 

9.7216e+00 – 
9.6085e+00 
(7.8282e-02) 

9.5520e+00 – 
9.4976e+00 
(3.6647e-02) 

10 
2.3477e+01 
2.2808e+01 
(3.0134e-01) 

2.4859e+01 – 
2.4457e+01 
(2.2177e-01) 

2.4184e+01 – 
2.3440e+01 
(5.3173e-01) 

2.5770e+01 – 
2.5525e+01 
(3.5373e-01) 

2.5523e+01 – 
2.5170e+01 
(3.2043e-01) 

15 
5.8940e+01 
5.6148e+01 

(2.3378e+00) 

6.8816e+01 – 
6.7015e+01 

(1.2775e+00) 

6.9599e+01 – 
6.5379e+01 

(3.7367e+00) 

6.7427e+01 – 
6.5148e+01 

(1.5385e+00) 

7.1087e+01 – 
7.0329e+01 
(5.4559e-01) 

80 

5 
1.3546e+01 
1.3416e+01 
(8.4269e-02) 

1.3638e+01 ≈ 

1.3491e+01 
(1.5114e-01) 

1.3356e+01 + 
1.3323e+01 
(3.9581e-02) 

1.4374e+01 
1.4105e+01 
(1.9545e-01) 

1.4163e+01 
1.3987e+01 
(1.1151e-01) 

10 
3.6421e+01 
3.5770e+01 
(6.4641e-01) 

3.9666e+01 – 
3.8696e+01 
(5.9005e-01) 

3.8743e+01 – 
3.7578e+01 
(9.6275e-01) 

4.1962e+01 – 
4.0317e+01 

(1.0101e+00) 

4.0968e+01 – 
4.0207e+01 
(6.6808e-01) 

15 
8.4774e+01 
8.2270e+01 

(2.2755e+00) 

9.9090e+01 – 
9.7385e+01 
(9.6888e-01) 

9.6154e+01 – 
9.1758e+01 

(4.4446e+00) 

1.0154e+02 – 
9.7978e+01 

(2.5617e+00) 

1.0262e+02 – 
1.0172e+02 
(8.0160e-01) 

100 

5 
1.8569e+01 
1.8346e+01 
(1.3873e-01) 

1.8546e+01 ≈ 

1.8428e+01 
(9.2339e-02) 

1.8235e+01 + 
1.8188e+01 
(2.7692e-02) 

1.9978e+01 – 
1.9736e+01 
(2.1405e-01) 

1.9621e+01 – 
1.9287e+01 
(1.9804e-01) 

10 
5.3883e+01 
5.1626e+01 

(2.3127e+00) 

5.8598e+01 – 
5.7108e+01 
(7.7233e-01) 

5.7341e+01 – 
5.5258e+01 

(1.6363e+00) 

6.2645e+01 – 
6.0466e+01 

(1.3440e+00) 

6.1002e+01 – 
5.9763e+01 
(6.5879e-01) 

15 
1.1651e+02 
1.1033e+02 

(4.1832e+00) 

1.2742e+02 – 
1.2402e+02 

(1.8425e+00) 

1.2975e+02 – 
1.1803e+02 

(9.2492e+00) 

1.3496e+02 – 
1.3331e+02 

(1.3718e+00) 

1.3483e+02 – 
1.3331e+02 
(9.2928e-01) 

 

 

Fig. 7.  The total cost of task offloading under different number of mobile devices and SBSs, respectively. 
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performance of the PSO drops significantly with an increasing 

number of mobile devices and SBSs, as does HGPCA, DE and 

GA. In contrast, the METOA manages to achieve much better 

performance than all the single-task algorithms in such a 

condition, which demonstrates the good scalability of METOA.  

D. Effectiveness Analysis of Knowledge Transfer 

To verify the effectiveness of knowledge transfer in METOA, 

we further analyzed the synergistic effects of the proposed 

segmented knowledge transfer and auxiliary tasks update in 

evolutionary search.  

According to the proposed strategies in Section IV, we first 

recorded the number of knowledge transfer from the auxiliary 

tasks to the CTOP. Then, we investigated the updates of the 

auxiliary tasks in different evolutionary stages. Notably, the 

knowledge transfer mentioned here indicates a positive transfer 

that the transfer of genetic material can make an improvement 

for the obtained solution of CTOP. Fig. 8 shows the rising trend 

of the number of knowledge transfer throughout the 

evolutionary process. It can be observed that the knowledge 

transfer from auxiliary tasks provides a great help to CTOP in 

the early stages of evolution, which is consistent to the results 

obtained in Fig. 4 and Fig. 6. This is probably because the 

cheap auxiliary tasks are easier to be handle than CTOP, which 

can provide useful evolutionary information quickly for CTOP, 

resulting in a rapid discovery of high-quality solutions. 

However, this is clearly not the case in the middle stages of 

evolution. As the auxiliary tasks gradually converge and 

eventually stagnate, genetic transfer from the auxiliary tasks is 

hardly effective. To tackle this, auxiliary tasks are updated to 

change the direction of evolution and improve the diversity of 

population. Therefore, in Fig. 8, the number of knowledge 

transfer has been observed to rise again, after the new auxiliary 

tasks are generated. There is a similar situation in the later 

stages of evolution. As a result, the METOA successfully 

exploits the positive transfer from the auxiliary tasks, while 

circumventing the distress caused by evolutionary stagnation. 

Further, the knowledge transfer from the auxiliary tasks to the 

CTOP mainly includes source decision variables transfer and 

extended decision variables transfer. Within a single transfer 

cycle, the transferred source and extended decision variables 

are from the same chromosome, the difference being that the 

former uses direct transfer and the latter uses indirect transfer. 

To observe the effect of knowledge transfer more clearly, in Fig. 

9, we plot the success rate (ratio of the number of positive 

transfers to the total number of transfer) of transferring the 

source and extended decision variables from the auxiliary tasks 

to the CTOP throughout the evolutionary process.  We can see 

that the transfer of both the decision variables is valid for the 

CTOP. As expected, in the early stages of evolution, for 

knowledge transfer, the source decision variables have a higher 

efficiency than the extended decision variables. This is due to 

the high similarity between the auxiliary tasks and CTOP, the 

transfer of source decision variables is able to accelerate 

convergence process. Complementary to source decision 

variables, the expanded decision variables are transferred to 

maintains a good diversity. In summary, the knowledge transfer 

in METOA is constructive for the evolutionary search in the 

CTOP.  

VI. CONCLUSION 

In this article, we handled the costly task offloading problem 

by introducing related and cheap auxiliary tasks into the 

proposed evolutionary multitasking framework. With the help 

of knowledge extraction and transfer from auxiliary tasks, the 

target problem can be quickly optimized. Moreover, we 

proposed a novel multitask evolutionary task offloading 

algorithm for solving the costly task offloading problem by 

using segmented knowledge transfer and auxiliary task update. 

Experimental results show that the proposed algorithm is 

capable of good performance in convergence, diversity and 

scalability, which demonstrates that the knowledge transfer 

from constructed auxiliary tasks can indeed effectively 

facilitate the search performance of the costly task offloading 

problem.  

In future work, we plan to study how to construct available 

auxiliary tasks for complex optimization problems. Meanwhile, 

when there are multiple auxiliary tasks, how the auxiliary tasks 

should work in collaboration is an issue to be investigated.  

 

Fig. 9.  The success rate of transferring the source and extended decision 

variables from the auxiliary tasks to the CTOP, respectively. 
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Fig. 8.  The number of knowledge transfer from the auxiliary tasks to the 

CTOP. 
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