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A B S T R A C T   

To fulfill increasingly difficult and demanding tasks in the ever-changing complex world, intelligent industrial 
products are to be developed with higher flexibility and adaptability. Digital twin (DT) brings about a possible 
means, due to its ability to provide candidate behavior adjustments based on received “feedbacks” from its 
physical part. However, such candidate adjustments are deterministic, and thus lack of flexibility and adapt-
ability. To address such problem, in this paper an extended concept – evolutionary digital twin (EDT) and an 
EDT-based new mode for intelligent industrial product development has been proposed. With our proposed EDT, 
a more precise approximated model of the physical world could be established through supervised learning, 
based on which the collaborative exploration for optimal policies via parallel simulation in multiple cyberspaces 
could be performed through reinforcement learning. Hence, more flexibility and adaptability could be brought to 
industrial products through machine learning (such as supervised learning and reinforcement learning) based 
self-evolution. As a primary verification of the effectiveness of our proposed approach, a case study has been 
carried out. The experimental results have well confirmed the effectiveness of our EDT based development mode.   

1. Introduction 

A new round of global scientific and technological revolution and 
industrial revolution is coming and will bring about a subversive impact 
on industries around the world. In particular, the rapid development of 
new generation information and communication technologies (ICTs) 
such as 5G, Internet of Things, cloud computing, big data, as well as 
artificial intelligence (AI) is reinforcing the connection between human, 
computing machine, and the physical world through data and infor-
mation to promote the intelligence of industrial products to higher levels 
defined in literature [1]. The industrial product with the capability of 
cognition, cooperation and quick adaption to the complex changing 
world is called an intelligent industrial product (IntelliIndusProd) in this 
paper. Such IntelliIndusProds are of increasing importance nowadays 
and in the future, as our systems are required to accomplish diversified 
and complex tasks more autonomously in complex world that has the 
characteristics of partially observable, non-cooperative, and 

dynamically changing. The core of nuclear power plant, multi-AGVs of 
logistics system, and multi-vehicles of vehicle networking [2,3,4] are all 
good examples of such kind of industrial products which should run 
autonomously in a rapidly changing environment through dynamic 
gaming based on part of the information. 

However, the R&D of IntelliIndusProds is much more difficult than 
that of traditional industrial products, as they are conceived to work in 
harsh complex working conditions and accomplish demanding (multi-
ple) missions. On one hand, nonlinearity, uncertainty, self-organization 
and emergence pose great difficulty and complexity for theoretical 
modeling; on the other hand, tactic and model design for IntelliIndu-
sProds under complex environments becomes even harder for engineers, 
due to limited human capability on precise abstraction and rapid 
cognition of high-dimensional information. It is arduous to develop an 
IntelliIndusProd in a short time with enough flexibility and adaptability 
through theoretical modeling, which relies only on human knowledge 
and experience. 
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Digital twin technology which integrates the cyber space and the 
physical space [5] has the potential to increase the flexibility, adapt-
ability and intelligence of the industrial product. First, virtual product 
(digital model) could better perceive the real world through the real- 
time “feedback” from its physical product (counterparts); second, vir-
tual product could synthesize the sensing data and provide the physical 
product with better action policies. However, such digital twin could 
hardly solve the above problem effectively. First, faced with demanding 
tasks, it may be difficult to construct such a virtual product (only by 
human knowledge) that could fully reflect its physical counterpart’s 
characteristics, due to the nonlinearity, uncertainty, self-organization 
and emergence of the complex world. For example, during establish-
ment of the virtual product of a physical robot arm, the working envi-
ronment of such robot arm, including the production line layout, the 
process to be executed, etc., is usually dynamic, with perturbation and 
drastically changing or even unknown for different tasks, and thus 
extremely difficult to model in advance. Second, the existence of various 
working conditions makes it difficult to pre-design a policy-making 
module that can generate the effective action policies for the physical 
product. Taking again the robot arm for example, as the motion control 
law is established through human experience based on the virtual 
product, when faced with totally different tasks, the control law may 
need to be re-designed, and such process normally takes several months. 

Therefore the concept of digital twin needs to be further developed 
and extended to enhance its self-learning, self-adaptation and self- 
growing capability based on machine intelligence. 

First, it is necessary for us to establish multiple cognitive models of 
the real world, called the approximate worlds, which keep approxi-
mating the different scenes of the real world through continuous 
learning. Through the approximate worlds, IntelliIndusProd could fully 
understand the real world, and could explore different scenes in parallel 
and in a low-cost, risk-free and super real-time way when it has to deal 
with the uncertainty in the partially observable, non-cooperative, and 
dynamically changing world. 

Second, it is necessary to train the virtual product to adapt to 
approximate worlds. With the approximate worlds gradually 
approaching the real world, the self-growing virtual product could 
finally adapt to the real world and give better action policies for the 
physical product. In addition, we could train multiple virtual products in 
parallel in a single approximate world which could generate more data 
through simulation to speed up the exploration process. In other words, 
the new kind of digital twin is an evolving digital twin equipped with 
multiple cyber spaces, namely multiple approximate worlds, where the 
virtual product could evolve its behavior and policy to better approxi-
mate the physical product and make better decisions. 

This paper proposes an Evolutionary Digital Twin (EDT) approach 
for the IntelliIndusProd development, and is organized as follows: Sec-
tion 2 presents related work; Section 3 and 4 introduces the EDT concept 
and the architecture of an EDT; Section 5 discusses the concrete estab-
lishment of a product design oriented EDT in details. Section 6 describes 
an application case study and discusses related results. Section 7 con-
cludes the paper with future work. 

2. Related work 

2.1. Simulation driven product design 

The innovation of digital design and manufacturing is the key to this 
new round of industrial revolution [23]. Currently, digital methods for 
product development can be used to quickly define and design a pro-
totype, not only in terms of product structure, but also product function 
and behavior [24]. The multi-disciplinary virtual prototype could sup-
port unified modeling and collaborative simulation across different 
disciplines to evaluate and optimize virtual products in the cyber space 
[25]. Model-based system engineering could establish the entire life-
cycle model of a product through multiple views, supporting the 

continuous evolution and verification of the product [26]. An advanced 
parallel simulator under multi-core environments is proposed to address 
the challenges of collaborative simulation of complex variable-structure 
systems that exhibit changes both at structural and behavior levels, with 
increasingly big and complex models [31]. Recently, digital twin-driven 
product design approaches has been proposed to optimize the design of 
the virtual product based on the data feedback from the physical product 
[6]. However, the above approaches mainly depend on human knowl-
edge and abstraction capability without better utilizing the power of 
new AI algorithms and models. 

2.2. Digital twin and parallel control 

The first formal definition of digital twin dates back to 2012, given 
by Glaessgen and Stargel [5] in NASA. A digital twin is an integrated 
multi-physics, multiscale, probabilistic simulation of an as-built system 
that uses the best available physical models, sensor updates, history 
data, etc., to mirror the life of its corresponding physical product [5]. 
Rosen et al. [8] gives another definition from the perspective of auton-
omous systems which are required to be able to respond rapidly to un-
expected events without central re-planning. According to [8], a digital 
twin is an ultra-realistic model that reflects the state of the process and 
the behavior of the autonomous system in interaction with its environ-
ment in the real world. 

From the above definitions, it could be summarized that a digital 
twin is an ultra-realistic model of the physical system, which is estab-
lished in different scales, synthesizing knowledge, data, and physical 
model from different domains and equipment. Such a definition, in fact, 
emphasizes a lot on the establishment of model validity which is the core 
value of digital twin, but is difficult to achieve in engineering, though 
related concepts, architectures [9], and even key technologies have 
already been proposed. This is mainly due to the fact that human 
knowledge is limited facing the complex real world. Thus starting from 
current human cognition of the world with traditional theories, we could 
scarcely build such a digital twin that could reproduce 100% the 
behavior and characteristics of its physical product, especially the de-
tails. However, when complex systems are taken into consideration, a 
minor mistake in such details could result in huge differences in 
behavior. Furthermore, to our knowledge, most of the research on dig-
ital twin concentrates on optimizing the performance of the physical 
product through human knowledge based optimization of the virtual 
product [8,10]. Similar to the modelling precision limit totally based on 
human knowledge, such optimization ability is also limited. 

Faced with similar difficulty in the control law design domain, Fei- 
yue et al. [11] proposed the parallel control theory. In this theory, 
they proposed constructing an equivalent artificial system (not exactly 
the same as the physical one) that works in parallel with the real world 
system. In this artificial system, planning and optimization algorithms 
could be designed and experimented for better control laws. Meanwhile, 
the behavior of this artificial system is further corrected by the data 
collected from the real system. Although such parallel control theory is 
promising and potentially effective in control law design where the core 
purpose is to eliminate deviations, it might be less applicable in the cases 
where policies should be made based on human knowledge or precise 
knowledge about the state or evolution dynamics of the system, for 
example the autonomous collaborative robot arm pairs on the produc-
tion line. Even so, the concept of parallel control has provided good 
insights to the design of our EDT. 

2.3. Reinforcement learning based design 

Recent years have witnessed rapid development of machine learning, 
especially deep learning and deep reinforcement learning. For example, 
in 2016, AlphaGo designed by DeepMind of Google mastered the game 
of Go and easily defeated the world champion Sedol Lee and Jie Ke by 
big scores [12]. With this victory, DeepMind published their research on 
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development of AlphaGo on Nature, followed by another one on 
AlphaZero which mastered the game of Go without human supervision. 
In 2019, faced with the more challenging task Starcraft II, AlphaStar 
[13] developed by DeepMind defeated again professional human players 
with score 10:1. From the details revealed in the articles [13], it could be 
seen that provided with perfectly described interaction environment and 
task targets, the agent could converge to behavior strategies largely 
superior than those manually developed, or even to optimal strategies, 
through autonomous learning. Hence, reinforcement learning based 
design pattern starts to attract increasing attention both in industry and 
academy, and is being applied to designs in different domains. 

Among these application domains, the design of robot control algo-
rithms has been widely studied and has been practically applied in the 
control of real robots. Asada et al. [14] developed a ping-pong player 
robot based on Q-learning algorithm [16]. Their developed robot con-
trol algorithm could drive the robot to beat the ball to required positions 
based only on visual information. Deisenroth et al. [15] proposed a 
model based policy search method to train the robot to accomplish 
building blocks task. Although the application systems in the above 
work were real robot machines, the robot control commands were 
constrained and limited by human scripted rules when applied. This may 
hinder better policy discovery in complicated tasks, as human knowl-
edge or cognition is, to some extent, limited. Deep reinforcement 
learning based robot control design (without human scripted rules in 
control commands), on the other hand, could hardly be applied to real 
robots, and still stays in simulation stage [17,18]. Zhang et al. [19,20] 
applied DQN algorithm to train a three joint robot for grasping task in 
simulation environment. However, when applied to physical robot 
machine, the performance was less satisfactory due to the differences 
between the simulation environment and the real world. Similar prob-
lems also exist in others work [21]. 

Hence, for the purpose of addressing the above problems encoun-
tered in simulation driven product design, we propose the concept of 
EDT which allows the designed product to persistently and intelligently 
optimize itself in its whole lifecycle. With our proposed EDT, learning 
agents could be equipped with a model with high and gradually 
increasing confidence, which in turn converge to behavior policies with 
higher performance in real products. 

3. EDT and persistent reinforcement based product design 
paradigm 

3.1. Common product development process 

The common product development process follows a step-by-step 
process which is mainly driven and led by human in three worlds 
including expected world, interpreted world and external world [24]. 
The product lifecycle could be roughly divided into 3 steps, as shown in 
Fig. 1: first, in the primary design step, according to the ideal world 
(corresponding to the expected world in [24]) which is based on the 
human understanding of the real world (corresponding to the external 
world in [24]), an ideal product model is established by means of 
mathematical and physical modeling in the cyber space. Second, in the 
detailed design, simulation and test step, an approximate world (cor-
responding to the interpreted world in [24]) of the real world is con-
structed through modeling and simulation, together with possible semi- 
physical simulation in verification. In this step, a digital or semi-physical 
prototype product based on the approximate world in the cyber space or 
the physical space is established. Finally, in the operation and service 
step, a real product is fabricated and released to provide services. In the 
traditional development mode, the function, performance and structure 
of the final product are fixed, with extremely limited flexibility and 
adaptability. Facing new scenarios and requirements, corrections or 
innovations from humans are needed, and then the above three steps 
needs to be repeated. Usually, each product development cycle will 
incur high cost and take a long time (several years in extreme cases), 
which cannot meet user’s need for fast product delivery, upgrade and 
iterations. In other words, this product development mode cannot sup-
port the fast product innovation and development (within a relatively 
short timeframe) in the coming 4th industrial revolution era. 

3.2. Connotation of EDT 

To address the above issue, based on the industrial Internet, inte-
grating the new generation ICT, the new generation AI technology and 
the product development field technology, the EDT provides a novel 
product development mode where different forms of learning and 
searching means in multiple parallel cyber spaces are introduced, which 
allows the IntelliIndusProd to evolve and possess better adaptability. 
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Fig. 1. Common process of product development.  
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The EDT, as an extension of DT, is also composed of the virtual and 
physical parts, namely the virtual product and physical product in terms 
of industrial product development. Mainly based on machine intelli-
gence and supplemented by human intelligence, the EDT could help 
effectively establish the operation law under various uncertainties and 
gradually achieve a well approximated model of the real world. Such 
capability could well guide product design improvement and operation 
optimization, and hence support to develop IntelliIndusProds with 
enough flexibility and adaptability for the complex world and tasks. 

The EDT, as shown Fig. 2, includes some notable features:  

(1) Compared with the current digital twin, the EDT clearly builds an 
approximate world corresponding to the real world, which could 
focus and simulate some specific aspects (views) of the real world 
according to the R&D requirements. Besides, via EDT, such 
established approximate world can support the repeated tests and 
experiments of the designed products and evolve with the new 
product designs at the same time.  

(2) Compared with the current digital twin whose cyber space and 
physical space are mapped through bijection, the EDT builds 
multiple cyber spaces to construct different models of the real 
world with uncertainties and of the product at different resolu-
tions from different aspects (views) of the real world according to 
the development demands.  

(3) Compared with the current digital twin which mainly use a cyber- 
space to predict the operation effects of the product, the EDT 
builds a development method using multiple cyber spaces for fast 
parallel learning and searching, which allows the approximate 
world to keep approaching the real world, and the product 
scheme to keep adapting to the real world. 

3.3. A new product development paradigm 

3.3.1. New process of product development 
The process of new product development mainly using machine in-

telligence and assisted by human intelligence, is an evolving process 
based on the EDT, as shown in Fig. 3. First, if it belongs to a product 
family, evolution could be performed through learning from the data of 
similar products fed back by their EDT in the early step of design, which 
is similar to the in-use product [29]. Initial models of both the product 
and the approximate world may be different from or cannot fully reflect 

the real ones or the physical ones. However, through evolution and 
learning process, such differences can be gradually decreased. More-
over, together with such evolution process, action policies of the phys-
ical product should be optimized. Second, based on the EDT, the 
traditional simulation, test, operation and service would not be a sepa-
rated process. Instead, this process is combined with the evolution of 
both the prototype product (virtual product) and the approximate 
world. Emphasizing on autonomous evolution, the above development 
process, however, does not negate the value of human and theoretical 
modeling which may also play an important role in extracting more 
value from the data on the contrary [7]. 

In this new product development process, there are two paradigms of 
digital twin evolution: simple evolution paradigm and model evolution 
paradigm, which are discussed in details as follows. 

3.3.2. Simple evolution paradigm 
In the simple evolution paradigm, the models & parameters of the 

product and the world are deterministic, the operation policies is the 
only adjustable factor. As shown in Fig. 4, at the beginning, the state of 
the approximate world is mapped from the real world’s state. In multiple 
cyber spaces, the virtual product could execute actions from different 
operation policies, and bring the state changes in the corresponding 
approximate world. The process is a super real-time process. If the policy 
space is huge, searching and planning algorithms like Monte Carlo Tree 
Search technology would be applied to explore the feasible solution 
space in parallel in multiple cyber spaces. Finally, the policy used in the 
physical space can be optimized using the searching and evaluating 
results generated in the cyber space. 

3.3.3. Model evolution paradigm 
In the model evolution paradigm, the behavior policies are not the 

only variable for the virtual product of an EDT, the cognition models of 
the real world would also change due to the gradually increased infor-
mation completeness and certainty. 

To this end, as shown in Fig. 5, supervised learning and unsupervised 
learning could be adopted to construct different cognition models of the 
real world, supporting the evolution of the approximate world towards 
the real world, while reinforcement learning approach could be applied 
for policy model construction, allowing the search of effective and even 
optimal behavior policies through interaction between the virtual 
product and the approximate world. 
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However, differences still exist between the behavior of the virtual 
product and that of the physical product, due to the existence of errors in 
training, forming a gap between the cyber space (including the virtual 
product and the approximate world) and the physical space (including 
the physical product and the real world). Thus, to mitigate this gap, the 
transfer learning approach could be applied to develop a product with 
enough adaptability to the errors above, allowing the converged policy 
models to be applied in physical world. 

4. EDT based intelligent industrial product development system 
architecture 

4.1. Overview 

The intelligence of the IntelliIndusProd is not possible without the 
effective fusion of big data, algorithm and computing power, for both 
supervised learning of the approximate world and the reinforcement 
learning of the virtual product. 

(1) Big data: big data is not only collected from the physical space, 
but also generated from cyber space. (2) Algorithm: algorithm mainly 
operates in data analysis engine, intelligent optimization engine and 
machine learning engine. (3) Computing power: enough computing 
power is needed to support the data generation in the approximate 
world and the virtual product, and to support the costly operation of 
corresponding engines. 

Furthermore, as the EDT contains multiple cyber spaces, much more 
computing power is needed to process big data from different cyber 
spaces. An IntelliIndusProd often runs on the industrial edge where 
computing resources and data processing capability are limited. 
Therefore, the development system should adopt the architecture that 
integrates the cloud and the edge computing power. 

As shown in Fig. 6, for both simple evolution paradigm and model 
evolution paradigm, the edge would collect and pre-process the data of 
the physical product and the real world, and then feed the data back to 
the cloud; the cloud could support the supervised learning of multiple 
approximate worlds and the reinforcement learning of multiple virtual 
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product instances efficiently. The edge would always update the latest 
intelligence to improve the flexibility and adaptability. 

4.2. Hierarchical description 

As shown in Fig. 7, the system architecture of the EDT based Intel-
liIndusProd development consists of several layers including Physical 
layer, Access/communication layer, Edge processing platform layer, 
Cloud development service platform layer and Application layer, along 
with two parts about Information security management, Standard and 
specification. The Cloud development service platform layer further 
includes Virtualizing layer, Cloud development service support layer 
and Portal layer. The details of this architecture are explained as follows.  

(1) Physical layer 

It not only includes the physical product and the real world, but also 
includes the related development resources and capabilities (such as 
computing power) required by the operation of multiple cyber spaces.  

(2) Access/communication layer 

It not only includes the access and communication of the edge to the 
physical product and the real world, but also includes the access and 
communication of the cloud to each edge.  

(3) Edge processing platform layer 

It not only supports the time-efficient operation of the intelligent 
industrial product, but also supports the local evolution of the intelligent 
industrial product by providing data analysis engine, intelligent opti-
mization engine and machine learning engine along with local data and 
computing power.  

(4) Cloud development service platform layer  
1) Virtualizing layer 

It not only includes the virtualization of traditional development 
resources and capabilities such as computing power, but also includes 
the virtualization of the physical product and the real world, namely the 
virtual product and the approximate world. The virtual product and the 
approximate world could be encapsulated by the container technology 
such as Docker, and could be created as multiple instances in the cloud 
or be deployed to the edge computing devices. 
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2) Cloud development service support layer  
(a) Basic services 

The basic services module provides the core support of the whole 
system, including the data support, the computing power support, and 
the algorithm support in form of services. Data as a service (DaaS) 
manages and provides the data collected from both the real world sys-
tems and the virtualized approximated world systems to support the 
data driven evolution process of the virtual intelligent industrial prod-
uct. Infrastructure as a service (IaaS) provides elastic computing power 
to large scale parallel simulation of multiple virtual intelligent industrial 
products in multiple approximated world instances, which is further 
supported by the high performance cloud simulation engine based on 
the Docker technique. Platform as a service (PaaS) realized via the data 
analysis engine, the intelligent optimization engine and the machine 
learning engine supports the evolution of the EDT with abundant 
powerful algorithms.  

(b) Application services 

The application services module provides shared domain related 
applications. With this module, users could define data driven intelli-
gent industrial product development tasks with the assist of system 
modelling and simulation language and collaborative design service 
(Software as a Service, SaaS). Large scale simulation instances are 
defined and executed in this part, continuously generating data from the 
interaction between the virtual intelligent industrial product and the 
approximated world, supporting the collaborative evolution of the vir-
tual model.  

3) Portal layer 

Stakeholders, including end users, could jointly carry out various 
activities in the whole life cycle of the intelligent industrial product, 
such as describing the ideal product and supervising the evolution of the 
prototype product.  

(5) Application layer 

It reflects that, for both simple evolution paradigm and model evo-
lution paradigm, the EDT could evolve the intelligent industrial product 
to develop the real intelligence based on the integration of cloud and 
edge. 

5. Product development-oriented EDT construction and 
evolution 

5.1. EDT construction design 

As described above, the EDT has the characteristics of persistent 
enhancement in terms of both its virtual product precision and its 
physical product policy optimization. Thus, it should be constructed 
naturally equipped with the ability to evolve, in terms of both the virtual 
product and the physical product. 

To achieve this, the virtual product is designed to be composed of a 
totally or partially parameterized policy module and a behavior module 
also parameterized. The function of the latter is to approximate the 
behavior of the physical product, while that of the former is to generate 
action commands for the latter to accomplish tasks. The physical prod-
uct, on the other hand, is designed to be composed also of a totally or 
partially parameterized policy module whose parameters are a copy of 
those of the virtual product’s policy module through update, as shown in 
the example of a robot arm EDT in Fig. 8. As for the approximate world, 
it is also equipped with a behavior module with similar kind and func-
tion as that of the virtual product. 

With such construction design, the upgrade of the virtual product 
relies on the model adjustment based on the measurement data collected 
from the physical world and the simulation data from the approximate 
world, while that of the physical product relies on the update of its 
behavior policy and the application of the generated policy. 

It is thus required that the physical product is able to apply the 
generated policy and that the physical product, the virtual product, and 
the approximate world are adjustable through programs. Based on this, 
the construction of the dual parts of the EDT is discussed in details in the 
following parts. 

5.1.1. Physical product construction 
In an EDT, the physical product serves as a collector of the physical 

Fig. 8. Global design of the EDT.  
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measurement data and an actuator and verifier of the policy learned by 
the virtual product. Thus, the physical product should have the ability to 
convert the policy into commands directly applicable to its physical sub- 
components and continuously collect measured data about itself and the 
surrounding environment. Based on these functional requirements, the 
following key points should be well determined in the construction of 
the physical product in an EDT.  

(1) Measurement data collection and preprocessing 

Measurement data of a physical system originate from measurements 
from different sensors which, taking the robot arm EDT shown in Fig. 9 
as an example, include angular sensors, angular velocity sensors, cam-
era, infrared sensor etc. Therefore, in order to gather sufficient data with 
a wide enough range for training the virtual product, the physical 
product needs to be equipped with a wide range of accurate sensors. 
Meanwhile, as different sensors may have different sample frequency, a 
pre-processing module in the edge processing platform layer is needed to 
unify different measurement data time line through either unifying the 
sample frequency or introducing sample interpolation for measurement 
data from sensors with a lower sample frequency. Through this coor-
dination process, the data are collected at the same frequency and could 
be merged together to provide the virtual product with a comprehensive 
measurement data set of both the physical product and its living 
environment. 

Moreover, besides the data time line unifying processing, further 
data processing is required before the collected data could be trans-
mitted to the virtual product and is utilized for training, due to the ex-
istence of noise, abnormality and misalignment in the preprocessed 
data. Thus, in the operation mode, the data flow from the physical world 
into the sensors, pass through the pre-processing module, the filter and 
alignment module, and finally transmitted to the cloud where they could 
be utilized for virtual product training.  

(2) Policy update and application 

To automatically update the policy of the physical product, a 
parameterized policy module which is the same with that of the virtual 
product is constructed. At each policy update, the parameters of the 
physical product’s policy module are updated with those of the virtual 
product’s policy module, and hence update the physical product 
behavior. Moreover, as the policy generated by the policy module is 
digital, and that the motion or dynamics of a physical system is usually 
continuous, converting modules, such as stepping motors, that convert 
the digital policy into continuous behavior policy are equipped, as 
shown in Fig. 9. These converting modules could convert online the 
behavior policy, and the behavior of the robot arm in the example in 
Fig. 9 could be controlled directly or indirectly by frequency of the pulse 
signal generated by the policy module. 

5.1.2. Virtual product construction 
In an EDT, the virtual product, composed of a policy module and a 

behavior module, serves as both an imitator and an optimal policy 
searcher of the physical product. In the operation mode, the behavior 
module corrects its behavior based on the measurement data received 
from its physical counterpart and the policy module searches for an 
optimal behavior policy in the approximate world with the support of 
the high performance computer cluster in the cloud. Accordingly, both 
the behavior module and the policy module of the virtual product should 
be designed as auto-adjustable through deterministic or stochastic 
learning programs. 

To make the behavior of the virtual product adjustable through 
measurement data based learning and simulation based reinforcement 
learning in the approximate world, both the policy module and the 
behavior module of the virtual product can be modelled in different 
parameterized forms: partially parameterized and totally parameter-
ized, as shown in Fig. 10. 

Fig. 9. Physical product construction for robot arm EDT.  
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In the totally parameterized modelling mode, the virtual product is 
either modelled by different neural networks according to its desired 
function or established by different components, each of which is further 
constructed by a neural network imitating its behavior. Such a model-
ling mode normally results in a large number of parameters to be opti-
mized when the behavior of the physical product is complex. Such non- 
structural characteristics combined with a large number of adjustable 
parameters make the model hard to optimize. 

Different from the totally parameterized modelling mode, the 
partially parameterized mode introduces the prior information of the 
physical product into the modelling process, including the system 
structure, some deterministic theory based part models, some manually 
behavior fitting functions, etc., as shown in Fig. 10. In this mode, the 
non-parameterized approach and the parameterized approach are 
combined in two ways. In the first way, part of the model is established 
based on theories with some influencing parameters determined from 
outside, for example by a neural network. In the second, part of the 

model further consists of a non-parameterized or partial parameterized 
sub-part and a totally parameterized sub-part. In such a construction 
form, parameters to be optimized could be drastically decreased, as the 
model is restricted to only some parts of the entire system, and that the 
parameterized parts are based on some empirical models or theory based 
models. But such modelling mode has its drawbacks compared to the 
first mode, such as sophisticated training process, relatively limited 
behavior fitting capability. 

Hence, in the construction of the virtual product’s behavior module 
of an EDT, the extent and the approach of parameterization needs to be 
considered delicately based on the features of the system and the 
extensibility of it. The same also applies to the construction of the 
approximated world models. 

5.2. EDT evolution design 

Currently, model evolutions are achieved mainly using machine 

Fig. 10. Behavior module construction of the EDT.  
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learning, deep learning, and reinforcement learning approaches. As for 
the first two approaches, models are trained mainly through supervised 
or semi-supervised mode based on collected data, while model evolution 
in the last approach is accomplished based on data collected via in-
teractions between the current agent and the environment. All three 
approaches have achieved good results in various tasks. However, in the 
evolution process of an EDT, none of these evolution approaches could 
succeed alone. Hence, in this paper, a coordinated evolution approach 
designed for the EDT is proposed. 

An EDT is composed of a virtual product and a physical product. 
However, the evolution of an EDT mainly concentrates on the virtual 
product side, while the evolution of the physical product is achieved 
through a simple transmission of parameters, given that both the virtual 
product and the physical product have a policy module with the same 
structure. Meanwhile, the parameter transmission could be performed 
once the difference between the policy generated by the up-to-date 
model and that given by the previous version of model exceeds a 
certain threshold. In such a way, the physical product is gradually 
evolved, guaranteeing its behavior stability at the same time. 

The evolution of the virtual product concerns the evolution of its 
behavior module through supervised learning and that of its policy 
module through reinforcement learning, which optimizes the behavior 
of an EDT according to different tasks. Moreover, as both evolutions take 
place simultaneously, a coevolution strategy that coordinates these two 
evolution processes also plays a key role in the evolution of the virtual 
product. 

5.2.1. Supervised learning based behavior module evolution 
The purpose of the behavior module evolution is to achieve the 

consistency between the behavior of the physical product and that of the 
virtual product. Taking the robot arm EDT as an example, in a well 
evolved virtual robot arm, each ankle of it should turn exactly the same 
angle as the physical robot arm, given the same input command. This 
consistency could result in an exact virtualization of the physical robot, 
which could serve to optimize the control policy of the real robot 
through reinforcement learning. 

Therefore the training of the behavior module follows the typical 
supervised learning process. The behavior module is established ac-
cording to the Section 5.1. As shown in Fig. 11, with the parameterized 
parts built by using neural networks, such process takes the input 
commands labelled by the output behavior of the physical product as 
training data, and takes the mean square error between the output 
behavior of the virtual product and that of the physical product as the 
loss function. The parameter optimization is accomplished through 
minimizing the loss function by tuning the neural network parameters. 

5.2.2. Reinforcement learning based policy module evolution 
The reinforcement learning process aims to optimize the policy 

adopted by the EDT. Different from supervised learning processes based 
on well labelled data, the reinforcement learning process learns through 
interaction between the agent and its living environment with no pre- 
collected labelled data, and relies on the virtual product behavior 
module. The complete training process under the collaborative training 
framework is shown in Fig. 12. 

As shown in Fig. 12, the exact virtualization of the physical product 
allows the creation of multiple cyber spaces, where the policy module 
accumulates experience (in the form of collected data, accumulated 
parameter gradients, etc.) and updates its policy model through parallel 
interaction with different virtual product models with multiple 
instances. 

In each of the multiple parallel interactions and trainings, the policy 
module collects observations of the environment and the reward it gains 
after applying its output policy based on previous observations. With 
batches of such interaction data collected, the policy module accumu-
lates experience through policy gradient [22] or policy optimization 
[17] methods. Finally, with the accumulated experience collected from 
different interaction and training processes, the parameters of the policy 
module is updated through application of the synthesized gradient or 
direct parameter assignment. 

5.2.3. Coevolution of the supervised learning and reinforcement learning 
The above two processes of the virtual product evolutions are carried 

out independently. However, coupling does exist between them. As 
stated above, the entire policy optimization process of the policy module 
bases on the correctness of the virtualization, namely the virtual product 
behavior module. Thus, if the behavior of the behavior module is largely 
different from that of the physical product, the behavior policy provided 
by the policy module which is trained based on data collected through 
simulation interaction between the virtual product in the approximate 
world would be useless or even dangerous if applied in real world. 
Accordingly, in the EDT evolution process, the evolution of the policy 
module will not start until good precision has been achieved by the 
behavior module. 

Furthermore, as described in the Section 5.1, the EDT is designed to 
support, to some extent, system scalability, which indicates that some 
functions or parts in the physical system could be modified according to 
the needs of product upgrade. Under such condition, the behavior 
module first will be updated, followed by the update of policy module, to 
adapt to this change, realizing specifically the support of system 
extensibility. 

6. Case study: EDT based development application in robot arm 
control 

In this section, an application of an EDT based development in the 
robot arm control command calculation is presented. We first introduce 

Fig. 11. Supervised learning of behavior module.  
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Fig. 12. Reinforcement learning of policy module.  

It usually takes 

months

1. Set up safe activity area by 

human

2. Adjust the motion path 

step by step and one by one 

by human

3. Integrate and debug the 

collaboration by human

4. Implement pilot run and 

improvement by human

Fig. 13. Manual adjustment of robot arms before equipped in a production line.  
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a robot arm dynamic model in the production line, followed by the 
design to construct an EDT for the robot arm control. Finally, some 
related results on the construction process and system performance are 
discussed. 

6.1. Robot arm control in the production line 

Manufacturers around the world are turning to automation to help 
solve the labor shortage, increase productivity and improve product 
quality. Robot arms provide a cost-effective, flexible, and safe automa-
tion solution for a wide range of production tasks, including machining, 
product packaging, product sorting, etc. 

At present, most of the busy robots on the production line are based 
on manual pre-adjustment, undertaking fixed tasks, and running in the 
scope of non-interference. However, with the increasing demand for 
personalized and intelligent production, they are required to perform 
diversified and complex tasks, constantly undertake and adapt to new 
tasks, and can work closely with each other or with people autono-
mously. Hence, they are becoming the IntelliIndusProd that this paper 
focuses on. 

Normally, a robot arm is composed of five subsystems, namely the 
driving system, the transmission system, the actuators, the control sys-
tem, and the detecting system. The control system stands in core position 
of a robot arm, as it coordinates the dynamics of motors on different axes 
to accomplish a production related task. Hence, the design of this control 
system is the core of the design of a robot arm. 

However, the control system of most robot arms could only control 
the robot arm to perform predefined action sequences which are realized 
through manual guidance and adjustment, as shown in Fig. 13. During 
this adjustment process, normally, a step-by-step guiding process is 
needed. In this process, the robot is controlled by the technician through 
a wired controller to accomplish a given task. The commands sent by the 
technician through the controller are transformed into executable code 
lines and stored in the computer. As the task that a robot arm needs to 
achieve is usually delicate with high precision, the human controlled 
process needs to be slow enough to protect both the robot and the 
product from being damaged. After this controlled process, the com-
mand execution needs to be further accelerated to meet the production 
needs. As a result, for each robot arm and each task, it would require 
about two to three months for a task oriented adjustment before its 

utilization on product line. Furthermore, as the whole adjustment pro-
cess is task oriented, any changes on the pre-defined task would require 
a re-adjustment of the robot arm. 

With the increasing needs for individualized and small-lot produc-
tion [28], flexibility of the production line becomes more and more 
important. Under such circumstances, the above manual adjustment and 
re-adjustment of robot arms turn out to be a bottleneck in the efficient 
production, where our proposed EDT approach can be utilized. Our 
approach applied in the design of the robot arm, allows the robot arm to 
adapt itself to different tasks, even changes in the robot arm constitu-
tion. We will describe the construction of a robot arm control EDT based 
on our proposed method in Section 6.2. 

6.2. Construction of a robot arm control EDT 

6.2.1. Constructing a robot arm EDT model 
The construction of the virtual product and physical product is 

described in Figs. 14 and 15. As the environment is simply an object with 
a table and a floor, the approximate world could be established 
deterministically. 

For the construction of the virtual product, geometric data and dy-
namic characteristic data are first collected through product description 
and geometric measurements. These collected data are further utilized 
for geometric modelling and dynamic modelling of the virtual product 
model. Concerning these two modelling processes, Unity [30] is adopted 
as the modelling tool, as it supports both 3D modelling and dynamic 
modelling, and hence could combine these two parts together, forming a 
unique virtual product model. 

Moreover, in the process of dynamic modelling, the aforementioned 
partial parameterized model is adopted. In this model, the dynamics of 
each arm and joint are determined through dynamic characteristic based 
modelling, while the interaction between different arms and joints are 
modelled through neural networks. Specifically, the mass, and the 
moment of inertia of each arm, the angle range and the motor torque 
range of each joint are determined manually, while the joint angles 
between successive arms, together with their changing rates are pro-
vided by the neural networks. Based on this, the behavior of a virtual 
product model could be described by joint angles, joint angle velocities, 
and joint positions. 

As for the policy module that is in charge of generating task oriented 

Fig. 14. Virtual product model construction process.  
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control commands, on the other hand, it is also modelled as a neural 
network taking the task related information (for example the position of 
the cargo in a cargo fetching task) as input and outputs the change rate 
of joint angles. 

Compared to the construction of the virtual product, that of the 
physical product is less complicated. As depicted in Fig. 15, the raw 
robot arm is first equipped with different sensors, including goniome-
ters, angular velocity sensors, industrial cameras, etc. These sensors 
collect measurement data including but not limited to the joint posi-
tions, the joint angles and the joint angle change rates, which could be 
further utilized in the evolution of the virtual product model. Further-
more, the physical product is connected to a computer where the policy 
module and the converter are equipped. For these two parts, the former 
is only a copy of the policy module of the virtual product, while the latter 
converts the target joint angle values generated by the former into target 
joint angle command signals which could be directly applied to the robot 
arm machine. 

6.2.2. Robot arm EDT evolution 
With the EDT model constructed above, evolution of the robot arm 

EDT is implemented as follows. For the supervised learning based 
behavior module evolution, the implementation is simply an application 
of the backpropagation process on a structured neural network, with one 
neural network part for each correlation between arms. The network 
training process is as described in Section 4.2. 

The evolution of the policy module is a bit more complicated. In this 
case, the Deep Deterministic Policy Gradient (DDPG) [22] algorithm is 
adopted as the reinforcement learning algorithm to drive the evolution 
of the policy module. The DDPG algorithm originating from Deep Policy 
Gradient (DPG) [27] algorithm is proposed for solving reinforcement 
learning problems, especially those with a continuous action space, 
where an agent needs to learn an action policy π through interaction 
with an environment, aiming at maximizing the expected return from 
start R1 

Rt =
∑

T

i=t

γi−tr(si, ai) (1)  

the DDPG algorithm utilizes an actor-critic structure, with the actor π(s;

θπ) serving as the policy function and the critic Q(s, a; θQ) as the action- 
value function, parameterized respectively with θπand θQ, where s de-
notes the observation state and a represents the action taken. In the 
training process, the θQ is updated via minimizing the expected value of 
temporal difference error 
Eπ

′

[

Q
(

st, at; θ
Q
)

−
(

r(st, at) + γQ
(

st+1, at+1; θ
Q
) ) ] (2)  

with π′ an ε-greedy policy based on policy π, while the policy parameter 
θπ is updated in the direction of the deterministic policy gradient 
through the equations 
δt = r(st, at) + γQ

(

st+1, π(st+1); θ
Q
)

− Q
(

st, at; θ
Q
) (3)  

θπ
t+1

= θπ
t +∇aQ

(

s, a; θQ
)

|
s=st ,a=π(st ;θ

π
t )

απ∇θπ π
(

s; θπ
t

)
⃒

⃒

s=st
(4) 

With experience replay and target networks mechanisms further 
introduced, the DDPG algorithm further stabilizes the algorithm evo-
lution process. 

Applying the DDPG algorithm to our case, the observation state s is 
designed as follows. The observation state provided by the behavior 
module of the virtual product is composed of variables below: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dif f jti = (jointi − tgt)/2

dif f jji = (jointi − joint
0
)/2

dif f thj =
(

tpointj − hpointj

)/

4 j = 1, 2, 3, 4

dif f hjij =
(

hpointj − jointi

)/

4 j = 1, 2, 3, 4
collision

(5)  

where jointi denotes the three-dimensional position of joint i, tgt repre-
sents the three-dimensional position of the target, tpointj is the three- 
dimensional position of the point j just beneath the object, hpointj is 
the three-dimensional position of the point j on the gripper, collision is 
the occurrence of collision. By these five parts, the final observation of 
the agent is 

observation= [s1 s2 s3 s4 s5 ]
si = [diff jti diff jji diff hji1 diff hji2 diff hji3 diff hji4 ] ∀i∈{1,2,3,4}

s= [diff th1 diff th2 diff th3 diff th4 collision ]

For the design of the reward function r(si,ai) that guides the robot 

Fig. 15. Physical product construction process.  
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arm to converge to optimal policy through the DDPG algorithm is 
designed to guide the gripper to the position below the object with 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

jre1 =

(

∑

3

i=0

‖tpointi − hpointi‖/4

)

jre2 =

(

∑

3

i=0

|hpoint xi|/4

)

jre3 =

(

∑

3

i=0

|hpoint yi|/4

)

jre4 = cos(hvect, tvect)

(6)  

where jrei i = 1, 2,3, 4 denotes the reward part i, hpoint x represents the 
x coordinate of hpoint, and hpoint y the y coordinate of the hpoint. hvect 

represents the normal vector of gripper plane, and tvect is the normal 
vector of object-bottom plane. 

Finally, these two evolution processes above are combined together 
according to the coevolution mode designed in Section 4. 

6.3. Results and discussions 

Based on the settings described above, in our simulation experiment, 
additional Gaussian noise has also been applied to the observation of the 
agent, i.e. observation introduced in Section 6.2.2, which forces our 
agent to learn the control policy instead of overfitting to a single 
application scene. Moreover, with the same models and algorithms, 
objects placed at different positions around the robot could be fetched 
successfully by the robot arm controlled by our trained policy model. 
Results of a single object reaching task is shown in Fig. 17. 

Episodic accumulated reward evolution chart suggests the variation 
of the accumulated reward value that the agent could gain in each 
episode throughout the model evolution process. As expressed in Fig. 16, 
at the beginning, the reward seems to be only random noise, which in-
dicates that our designed policy module has not yet capture the rules of 
the task and it just behaves randomly. Then, with the progress of evo-
lution, the episodic reward starts to rise with gradually narrowing 
variation range. This shows that our policy module has mastered the 
optimal control policy, indicating the effectiveness of our approach. This 
could be further confirmed by the results on distance variation along 
time with a well-trained policy module, as shown in Fig. 17. From 
Fig. 17, it could be seen that during the process, with the progress of 
time, the distance between the robot arm hand and the bottom of the 
object decreases and reaches under 1 cm rapidly. This result shows that 
through the control policy learned by the policy module, the robot arm 
could accomplish cargo fetching tasks as expected, which confirms the 
results above. 

7. Conclusion and future work 

Motivated by the core idea of developing intelligent industrial 
products with autonomous learning and self-adaptation capability, we 
proposed an EDT approach. The contribution of this paper mainly 
includes: 

First, a new concept of EDT has been proposed in this paper via 
machine learning approaches, to address the lack of flexibility and 
adaptability in traditional industrial product development. With the 
newly proposed EDT, more precise virtual product together with 
behavior policies with higher performance could be developed. 

Second, a coevolution approach of the approximate world and the 
product has been proposed, where the former converges to the behavior 
of the real world and the latter explores excellent behavior policies that 
could be applied in the real world. Moreover, multiple virtual spaces has 
been designed, allowing for more efficient and effective design of 
different policy models corresponding to different situations, which in 
turn could largely improve the adaptability of the established policy 
model to varying and uncertain environments. 

Third, two evolution paradigms for the virtual product, namely the 
simple evolution paradigm and the model evolution paradigm, have 
been proposed. The former allows policy improvement via super real- 
time deep search based on techniques like Monte Carlo Tree Search, 
while the latter adopts reinforcement learning approach to ameliorate 
the policy performance of the product, based on recognition abstracted 
through supervised learning and unsupervised learning. Moreover, via 
transfer learning the gap between the virtual space and the physical 
space was merged for application of the learned policy. 

Our future work will concentrate on the following two aspects:  

(1) the abstract model and evolution formalism which form the 
theoretical basis of the intelligent industrial product 
development.  

(2) the system of swarm intelligent industrial product systems 
developed based on EDT, which supports the collaborative 
recognition and decision with multiple agents. 
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