
Advanced Engineering Informatics 47 (2021) 101209

Available online 1 January 2021
1474-0346/© 2020 Elsevier Ltd. All rights reserved.

Evolutionary digital twin: A new approach for intelligent industrial
product development
Ting Yu Lin a,b,c, Zhengxuan Jia a,b,c, Chen Yang d,*, Yingying Xiao a,b,c, Shulin Lan e,
Guoqiang Shi a,b,c, Bi Zeng a,b,c, Heyu Li a,b,c

a State Key Laboratory of Complex Product Intelligent Manufacturing System Technology, Beijing Institute of Electronic System Engineering, Beijing, PR China
b Beijing Complex Product Advanced Manufacturing Engineering Research Center, Beijing Simulation Center, Beijing, PR China
c Science and Technology on Special System Simulation Laboratory, Beijing Simulation Center, Beijing, PR China
d School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
e School of Economics and Management, University of the Chinese Academy of Sciences, Beijing, PR China

A R T I C L E I N F O

Keywords:
Evolutionary digital twin
Intelligent industrial product
Collaborative evolution
Approximate world
Multiple cyber spaces
Simple evolution paradigm
Model evolution paradigm

A B S T R A C T

To fulfill increasingly difficult and demanding tasks in the ever-changing complex world, intelligent industrial
products are to be developed with higher flexibility and adaptability. Digital twin (DT) brings about a possible
means, due to its ability to provide candidate behavior adjustments based on received “feedbacks” from its
physical part. However, such candidate adjustments are deterministic, and thus lack of flexibility and adapt-
ability. To address such problem, in this paper an extended concept – evolutionary digital twin (EDT) and an
EDT-based new mode for intelligent industrial product development has been proposed. With our proposed EDT,
a more precise approximated model of the physical world could be established through supervised learning,
based on which the collaborative exploration for optimal policies via parallel simulation in multiple cyberspaces
could be performed through reinforcement learning. Hence, more flexibility and adaptability could be brought to
industrial products through machine learning (such as supervised learning and reinforcement learning) based
self-evolution. As a primary verification of the effectiveness of our proposed approach, a case study has been
carried out. The experimental results have well confirmed the effectiveness of our EDT based development mode.

1. Introduction

A new round of global scientific and technological revolution and
industrial revolution is coming and will bring about a subversive impact
on industries around the world. In particular, the rapid development of
new generation information and communication technologies (ICTs)
such as 5G, Internet of Things, cloud computing, big data, as well as
artificial intelligence (AI) is reinforcing the connection between human,
computing machine, and the physical world through data and infor-
mation to promote the intelligence of industrial products to higher levels
defined in literature [1]. The industrial product with the capability of
cognition, cooperation and quick adaption to the complex changing
world is called an intelligent industrial product (IntelliIndusProd) in this
paper. Such IntelliIndusProds are of increasing importance nowadays
and in the future, as our systems are required to accomplish diversified
and complex tasks more autonomously in complex world that has the
characteristics of partially observable, non-cooperative, and

dynamically changing. The core of nuclear power plant, multi-AGVs of
logistics system, and multi-vehicles of vehicle networking [2,3,4] are all
good examples of such kind of industrial products which should run
autonomously in a rapidly changing environment through dynamic
gaming based on part of the information.

However, the R&D of IntelliIndusProds is much more difficult than
that of traditional industrial products, as they are conceived to work in
harsh complex working conditions and accomplish demanding (multi-
ple) missions. On one hand, nonlinearity, uncertainty, self-organization
and emergence pose great difficulty and complexity for theoretical
modeling; on the other hand, tactic and model design for IntelliIndu-
sProds under complex environments becomes even harder for engineers,
due to limited human capability on precise abstraction and rapid
cognition of high-dimensional information. It is arduous to develop an
IntelliIndusProd in a short time with enough flexibility and adaptability
through theoretical modeling, which relies only on human knowledge
and experience.

* Corresponding author.
E-mail address: yangchen666@bit.edu.cn (C. Yang).

Contents lists available at ScienceDirect

Advanced Engineering Informatics
journal homepage: www.elsevier.com/locate/aei

https://doi.org/10.1016/j.aei.2020.101209
Received 10 January 2020; Received in revised form 7 October 2020; Accepted 16 November 2020

Advanced Engineering Informatics 47 (2021) 101209

2

Digital twin technology which integrates the cyber space and the
physical space [5] has the potential to increase the flexibility, adapt-
ability and intelligence of the industrial product. First, virtual product
(digital model) could better perceive the real world through the real-
time “feedback” from its physical product (counterparts); second, vir-
tual product could synthesize the sensing data and provide the physical
product with better action policies. However, such digital twin could
hardly solve the above problem effectively. First, faced with demanding
tasks, it may be difficult to construct such a virtual product (only by
human knowledge) that could fully reflect its physical counterpart’s
characteristics, due to the nonlinearity, uncertainty, self-organization
and emergence of the complex world. For example, during establish-
ment of the virtual product of a physical robot arm, the working envi-
ronment of such robot arm, including the production line layout, the
process to be executed, etc., is usually dynamic, with perturbation and
drastically changing or even unknown for different tasks, and thus
extremely difficult to model in advance. Second, the existence of various
working conditions makes it difficult to pre-design a policy-making
module that can generate the effective action policies for the physical
product. Taking again the robot arm for example, as the motion control
law is established through human experience based on the virtual
product, when faced with totally different tasks, the control law may
need to be re-designed, and such process normally takes several months.

Therefore the concept of digital twin needs to be further developed
and extended to enhance its self-learning, self-adaptation and self-
growing capability based on machine intelligence.

First, it is necessary for us to establish multiple cognitive models of
the real world, called the approximate worlds, which keep approxi-
mating the different scenes of the real world through continuous
learning. Through the approximate worlds, IntelliIndusProd could fully
understand the real world, and could explore different scenes in parallel
and in a low-cost, risk-free and super real-time way when it has to deal
with the uncertainty in the partially observable, non-cooperative, and
dynamically changing world.

Second, it is necessary to train the virtual product to adapt to
approximate worlds. With the approximate worlds gradually
approaching the real world, the self-growing virtual product could
finally adapt to the real world and give better action policies for the
physical product. In addition, we could train multiple virtual products in
parallel in a single approximate world which could generate more data
through simulation to speed up the exploration process. In other words,
the new kind of digital twin is an evolving digital twin equipped with
multiple cyber spaces, namely multiple approximate worlds, where the
virtual product could evolve its behavior and policy to better approxi-
mate the physical product and make better decisions.

This paper proposes an Evolutionary Digital Twin (EDT) approach
for the IntelliIndusProd development, and is organized as follows: Sec-
tion 2 presents related work; Section 3 and 4 introduces the EDT concept
and the architecture of an EDT; Section 5 discusses the concrete estab-
lishment of a product design oriented EDT in details. Section 6 describes
an application case study and discusses related results. Section 7 con-
cludes the paper with future work.

2. Related work

2.1. Simulation driven product design

The innovation of digital design and manufacturing is the key to this
new round of industrial revolution [23]. Currently, digital methods for
product development can be used to quickly define and design a pro-
totype, not only in terms of product structure, but also product function
and behavior [24]. The multi-disciplinary virtual prototype could sup-
port unified modeling and collaborative simulation across different
disciplines to evaluate and optimize virtual products in the cyber space
[25]. Model-based system engineering could establish the entire life-
cycle model of a product through multiple views, supporting the

continuous evolution and verification of the product [26]. An advanced
parallel simulator under multi-core environments is proposed to address
the challenges of collaborative simulation of complex variable-structure
systems that exhibit changes both at structural and behavior levels, with
increasingly big and complex models [31]. Recently, digital twin-driven
product design approaches has been proposed to optimize the design of
the virtual product based on the data feedback from the physical product
[6]. However, the above approaches mainly depend on human knowl-
edge and abstraction capability without better utilizing the power of
new AI algorithms and models.

2.2. Digital twin and parallel control

The first formal definition of digital twin dates back to 2012, given
by Glaessgen and Stargel [5] in NASA. A digital twin is an integrated
multi-physics, multiscale, probabilistic simulation of an as-built system
that uses the best available physical models, sensor updates, history
data, etc., to mirror the life of its corresponding physical product [5].
Rosen et al. [8] gives another definition from the perspective of auton-
omous systems which are required to be able to respond rapidly to un-
expected events without central re-planning. According to [8], a digital
twin is an ultra-realistic model that reflects the state of the process and
the behavior of the autonomous system in interaction with its environ-
ment in the real world.

From the above definitions, it could be summarized that a digital
twin is an ultra-realistic model of the physical system, which is estab-
lished in different scales, synthesizing knowledge, data, and physical
model from different domains and equipment. Such a definition, in fact,
emphasizes a lot on the establishment of model validity which is the core
value of digital twin, but is difficult to achieve in engineering, though
related concepts, architectures [9], and even key technologies have
already been proposed. This is mainly due to the fact that human
knowledge is limited facing the complex real world. Thus starting from
current human cognition of the world with traditional theories, we could
scarcely build such a digital twin that could reproduce 100% the
behavior and characteristics of its physical product, especially the de-
tails. However, when complex systems are taken into consideration, a
minor mistake in such details could result in huge differences in
behavior. Furthermore, to our knowledge, most of the research on dig-
ital twin concentrates on optimizing the performance of the physical
product through human knowledge based optimization of the virtual
product [8,10]. Similar to the modelling precision limit totally based on
human knowledge, such optimization ability is also limited.

Faced with similar difficulty in the control law design domain, Fei-
yue et al. [11] proposed the parallel control theory. In this theory,
they proposed constructing an equivalent artificial system (not exactly
the same as the physical one) that works in parallel with the real world
system. In this artificial system, planning and optimization algorithms
could be designed and experimented for better control laws. Meanwhile,
the behavior of this artificial system is further corrected by the data
collected from the real system. Although such parallel control theory is
promising and potentially effective in control law design where the core
purpose is to eliminate deviations, it might be less applicable in the cases
where policies should be made based on human knowledge or precise
knowledge about the state or evolution dynamics of the system, for
example the autonomous collaborative robot arm pairs on the produc-
tion line. Even so, the concept of parallel control has provided good
insights to the design of our EDT.

2.3. Reinforcement learning based design

Recent years have witnessed rapid development of machine learning,
especially deep learning and deep reinforcement learning. For example,
in 2016, AlphaGo designed by DeepMind of Google mastered the game
of Go and easily defeated the world champion Sedol Lee and Jie Ke by
big scores [12]. With this victory, DeepMind published their research on

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

3

development of AlphaGo on Nature, followed by another one on
AlphaZero which mastered the game of Go without human supervision.
In 2019, faced with the more challenging task Starcraft II, AlphaStar
[13] developed by DeepMind defeated again professional human players
with score 10:1. From the details revealed in the articles [13], it could be
seen that provided with perfectly described interaction environment and
task targets, the agent could converge to behavior strategies largely
superior than those manually developed, or even to optimal strategies,
through autonomous learning. Hence, reinforcement learning based
design pattern starts to attract increasing attention both in industry and
academy, and is being applied to designs in different domains.

Among these application domains, the design of robot control algo-
rithms has been widely studied and has been practically applied in the
control of real robots. Asada et al. [14] developed a ping-pong player
robot based on Q-learning algorithm [16]. Their developed robot con-
trol algorithm could drive the robot to beat the ball to required positions
based only on visual information. Deisenroth et al. [15] proposed a
model based policy search method to train the robot to accomplish
building blocks task. Although the application systems in the above
work were real robot machines, the robot control commands were
constrained and limited by human scripted rules when applied. This may
hinder better policy discovery in complicated tasks, as human knowl-
edge or cognition is, to some extent, limited. Deep reinforcement
learning based robot control design (without human scripted rules in
control commands), on the other hand, could hardly be applied to real
robots, and still stays in simulation stage [17,18]. Zhang et al. [19,20]
applied DQN algorithm to train a three joint robot for grasping task in
simulation environment. However, when applied to physical robot
machine, the performance was less satisfactory due to the differences
between the simulation environment and the real world. Similar prob-
lems also exist in others work [21].

Hence, for the purpose of addressing the above problems encoun-
tered in simulation driven product design, we propose the concept of
EDT which allows the designed product to persistently and intelligently
optimize itself in its whole lifecycle. With our proposed EDT, learning
agents could be equipped with a model with high and gradually
increasing confidence, which in turn converge to behavior policies with
higher performance in real products.

3. EDT and persistent reinforcement based product design
paradigm

3.1. Common product development process

The common product development process follows a step-by-step
process which is mainly driven and led by human in three worlds
including expected world, interpreted world and external world [24].
The product lifecycle could be roughly divided into 3 steps, as shown in
Fig. 1: first, in the primary design step, according to the ideal world
(corresponding to the expected world in [24]) which is based on the
human understanding of the real world (corresponding to the external
world in [24]), an ideal product model is established by means of
mathematical and physical modeling in the cyber space. Second, in the
detailed design, simulation and test step, an approximate world (cor-
responding to the interpreted world in [24]) of the real world is con-
structed through modeling and simulation, together with possible semi-
physical simulation in verification. In this step, a digital or semi-physical
prototype product based on the approximate world in the cyber space or
the physical space is established. Finally, in the operation and service
step, a real product is fabricated and released to provide services. In the
traditional development mode, the function, performance and structure
of the final product are fixed, with extremely limited flexibility and
adaptability. Facing new scenarios and requirements, corrections or
innovations from humans are needed, and then the above three steps
needs to be repeated. Usually, each product development cycle will
incur high cost and take a long time (several years in extreme cases),
which cannot meet user’s need for fast product delivery, upgrade and
iterations. In other words, this product development mode cannot sup-
port the fast product innovation and development (within a relatively
short timeframe) in the coming 4th industrial revolution era.

3.2. Connotation of EDT

To address the above issue, based on the industrial Internet, inte-
grating the new generation ICT, the new generation AI technology and
the product development field technology, the EDT provides a novel
product development mode where different forms of learning and
searching means in multiple parallel cyber spaces are introduced, which
allows the IntelliIndusProd to evolve and possess better adaptability.

dlroWlaeRdlroWlaedI

tcudorPlaeRtcudorPlaedI

Approximate World

Prototype Product

Conceptual Design in

Cyber Space

Operation & Service in

Physical Space

Detailed Design, Simulation &

Test in Cyber&Physical Space

By

Human

By

Human

Fig. 1. Common process of product development.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

4

The EDT, as an extension of DT, is also composed of the virtual and
physical parts, namely the virtual product and physical product in terms
of industrial product development. Mainly based on machine intelli-
gence and supplemented by human intelligence, the EDT could help
effectively establish the operation law under various uncertainties and
gradually achieve a well approximated model of the real world. Such
capability could well guide product design improvement and operation
optimization, and hence support to develop IntelliIndusProds with
enough flexibility and adaptability for the complex world and tasks.

The EDT, as shown Fig. 2, includes some notable features:

(1) Compared with the current digital twin, the EDT clearly builds an
approximate world corresponding to the real world, which could
focus and simulate some specific aspects (views) of the real world
according to the R&D requirements. Besides, via EDT, such
established approximate world can support the repeated tests and
experiments of the designed products and evolve with the new
product designs at the same time.

(2) Compared with the current digital twin whose cyber space and
physical space are mapped through bijection, the EDT builds
multiple cyber spaces to construct different models of the real
world with uncertainties and of the product at different resolu-
tions from different aspects (views) of the real world according to
the development demands.

(3) Compared with the current digital twin which mainly use a cyber-
space to predict the operation effects of the product, the EDT
builds a development method using multiple cyber spaces for fast
parallel learning and searching, which allows the approximate
world to keep approaching the real world, and the product
scheme to keep adapting to the real world.

3.3. A new product development paradigm

3.3.1. New process of product development
The process of new product development mainly using machine in-

telligence and assisted by human intelligence, is an evolving process
based on the EDT, as shown in Fig. 3. First, if it belongs to a product
family, evolution could be performed through learning from the data of
similar products fed back by their EDT in the early step of design, which
is similar to the in-use product [29]. Initial models of both the product
and the approximate world may be different from or cannot fully reflect

the real ones or the physical ones. However, through evolution and
learning process, such differences can be gradually decreased. More-
over, together with such evolution process, action policies of the phys-
ical product should be optimized. Second, based on the EDT, the
traditional simulation, test, operation and service would not be a sepa-
rated process. Instead, this process is combined with the evolution of
both the prototype product (virtual product) and the approximate
world. Emphasizing on autonomous evolution, the above development
process, however, does not negate the value of human and theoretical
modeling which may also play an important role in extracting more
value from the data on the contrary [7].

In this new product development process, there are two paradigms of
digital twin evolution: simple evolution paradigm and model evolution
paradigm, which are discussed in details as follows.

3.3.2. Simple evolution paradigm
In the simple evolution paradigm, the models & parameters of the

product and the world are deterministic, the operation policies is the
only adjustable factor. As shown in Fig. 4, at the beginning, the state of
the approximate world is mapped from the real world’s state. In multiple
cyber spaces, the virtual product could execute actions from different
operation policies, and bring the state changes in the corresponding
approximate world. The process is a super real-time process. If the policy
space is huge, searching and planning algorithms like Monte Carlo Tree
Search technology would be applied to explore the feasible solution
space in parallel in multiple cyber spaces. Finally, the policy used in the
physical space can be optimized using the searching and evaluating
results generated in the cyber space.

3.3.3. Model evolution paradigm
In the model evolution paradigm, the behavior policies are not the

only variable for the virtual product of an EDT, the cognition models of
the real world would also change due to the gradually increased infor-
mation completeness and certainty.

To this end, as shown in Fig. 5, supervised learning and unsupervised
learning could be adopted to construct different cognition models of the
real world, supporting the evolution of the approximate world towards
the real world, while reinforcement learning approach could be applied
for policy model construction, allowing the search of effective and even
optimal behavior policies through interaction between the virtual
product and the approximate world.

Physical Product

Virtual Product of Multi-

Cyber Space

Real World

lives in

lives in

Approximate World of

Multi-Cyber Space

Supervised / Unsupervised Learning

Transfer Learning

R
ein

fo
rcem

en
t L

earn
in

g

(M
o
n
te C

arlo
) T

ree S
earch

in
g

Physical Product

Virtual

Product

Fig. 2. Core features of the EDT.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

5

However, differences still exist between the behavior of the virtual
product and that of the physical product, due to the existence of errors in
training, forming a gap between the cyber space (including the virtual
product and the approximate world) and the physical space (including
the physical product and the real world). Thus, to mitigate this gap, the
transfer learning approach could be applied to develop a product with
enough adaptability to the errors above, allowing the converged policy
models to be applied in physical world.

4. EDT based intelligent industrial product development system
architecture

4.1. Overview

The intelligence of the IntelliIndusProd is not possible without the
effective fusion of big data, algorithm and computing power, for both
supervised learning of the approximate world and the reinforcement
learning of the virtual product.

(1) Big data: big data is not only collected from the physical space,
but also generated from cyber space. (2) Algorithm: algorithm mainly
operates in data analysis engine, intelligent optimization engine and
machine learning engine. (3) Computing power: enough computing
power is needed to support the data generation in the approximate
world and the virtual product, and to support the costly operation of
corresponding engines.

Furthermore, as the EDT contains multiple cyber spaces, much more
computing power is needed to process big data from different cyber
spaces. An IntelliIndusProd often runs on the industrial edge where
computing resources and data processing capability are limited.
Therefore, the development system should adopt the architecture that
integrates the cloud and the edge computing power.

As shown in Fig. 6, for both simple evolution paradigm and model
evolution paradigm, the edge would collect and pre-process the data of
the physical product and the real world, and then feed the data back to
the cloud; the cloud could support the supervised learning of multiple
approximate worlds and the reinforcement learning of multiple virtual

Physical

Product

Virtual

Product

Real World

lives in

lives in

Approximate

World

Real World

Real Product

Approximate World

Prototype Product

Mainly By AI

& Less By

Human

Ideal World

Ideal Product

Mainly By AI

& Less By

Human

Fig. 3. New product development process.

Time Axis

...

(Monte Carlo)

Tree Searching

(Monte Carlo)

Tree Searching

Fig. 4. Simple evolution paradigm.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

6

product instances efficiently. The edge would always update the latest
intelligence to improve the flexibility and adaptability.

4.2. Hierarchical description

As shown in Fig. 7, the system architecture of the EDT based Intel-
liIndusProd development consists of several layers including Physical
layer, Access/communication layer, Edge processing platform layer,
Cloud development service platform layer and Application layer, along
with two parts about Information security management, Standard and
specification. The Cloud development service platform layer further
includes Virtualizing layer, Cloud development service support layer
and Portal layer. The details of this architecture are explained as follows.

(1) Physical layer

It not only includes the physical product and the real world, but also
includes the related development resources and capabilities (such as
computing power) required by the operation of multiple cyber spaces.

(2) Access/communication layer

It not only includes the access and communication of the edge to the
physical product and the real world, but also includes the access and
communication of the cloud to each edge.

(3) Edge processing platform layer

It not only supports the time-efficient operation of the intelligent
industrial product, but also supports the local evolution of the intelligent
industrial product by providing data analysis engine, intelligent opti-
mization engine and machine learning engine along with local data and
computing power.

(4) Cloud development service platform layer
1) Virtualizing layer

It not only includes the virtualization of traditional development
resources and capabilities such as computing power, but also includes
the virtualization of the physical product and the real world, namely the
virtual product and the approximate world. The virtual product and the
approximate world could be encapsulated by the container technology
such as Docker, and could be created as multiple instances in the cloud
or be deployed to the edge computing devices.

Time Axis

...

Transfer

Learning

Transfer

Learning

Supervised /

Unsupervised

Learning

Supervised /

Unsupervised

Learning

Reforcement

Learning

Reforcement

Learning

...2oiranecS1oiranecS

Fig. 5. Model evolution paradigm.

Feeding back data of the physical

product and the real world

Cloud

Edge 1

(Scenario 1)

Edge n

(Scenario n)

Updating the

newest intelligence

Updating the

newest intelligence

The reinforcement learning of

multiple virtual product instances

The confrontation training of

multiple approximate worlds

Fig. 6. Cloud-edge integrated architecture.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

7

In
fo

rm
atio

n
 secu

rity
 m

an
ag

em
en

t

Virtua

lizing

layer

C
lo

u
d
 d

ev
elo

p
m

en
t serv

ice p
latfo

rm
 lay

er

Access /

comm-

unication

layer
Perception and control interface

Physical

layer

Communication network and interface

S
tan

d
ard

 an
d
 sp

ecificatio
n

Development resource

C
lo

u
d
 d

ev
elo

p
m

en
t serv

ice su
p
p
o
rt lay

er

Application

layer

The real world of intelligent industrial product

Physical intelligent industrial product

Development capability

IoT gatewayInformation terminal Software service bus

Portal

layer

Cloud customized portal

Service provider portal
Platform operator

portal
Service consumer portal

High performance cloud simulation engine (PaaS)

Infrastructure service (IaaS) Data service (DaaS)

Data analysis engine / intelligent optimization engine / machine learning engine (PaaS)

Basic services

App services

System modeling and simulation language

and collaborative design software (SaaS)
CFX/DFX/... (APPs)

Cloud Edge

Model update/

decision support

Application
Model

training and

optimization

Data feedback

Edge

processing

platform

layer
Edge virtual development resource/edge virtual intelligent industrial product and

approximate world/edge virtual development capability

Edge processing service support (data analysis engine / intelligent optimization engine /

machine learning engine)

Edge pervasive terminal

Approximate world

Virtual intelligent

industrial product

Approximate world

Virtual intelligent

industrial product

Cloud virtual development

resource

Cloud virtual intelligent industrial

product and approximate world

Cloud virtual development

capability

Fig. 7. Global architecture of the EDT based product design system.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

8

2) Cloud development service support layer
(a) Basic services

The basic services module provides the core support of the whole
system, including the data support, the computing power support, and
the algorithm support in form of services. Data as a service (DaaS)
manages and provides the data collected from both the real world sys-
tems and the virtualized approximated world systems to support the
data driven evolution process of the virtual intelligent industrial prod-
uct. Infrastructure as a service (IaaS) provides elastic computing power
to large scale parallel simulation of multiple virtual intelligent industrial
products in multiple approximated world instances, which is further
supported by the high performance cloud simulation engine based on
the Docker technique. Platform as a service (PaaS) realized via the data
analysis engine, the intelligent optimization engine and the machine
learning engine supports the evolution of the EDT with abundant
powerful algorithms.

(b) Application services

The application services module provides shared domain related
applications. With this module, users could define data driven intelli-
gent industrial product development tasks with the assist of system
modelling and simulation language and collaborative design service
(Software as a Service, SaaS). Large scale simulation instances are
defined and executed in this part, continuously generating data from the
interaction between the virtual intelligent industrial product and the
approximated world, supporting the collaborative evolution of the vir-
tual model.

3) Portal layer

Stakeholders, including end users, could jointly carry out various
activities in the whole life cycle of the intelligent industrial product,
such as describing the ideal product and supervising the evolution of the
prototype product.

(5) Application layer

It reflects that, for both simple evolution paradigm and model evo-
lution paradigm, the EDT could evolve the intelligent industrial product
to develop the real intelligence based on the integration of cloud and
edge.

5. Product development-oriented EDT construction and
evolution

5.1. EDT construction design

As described above, the EDT has the characteristics of persistent
enhancement in terms of both its virtual product precision and its
physical product policy optimization. Thus, it should be constructed
naturally equipped with the ability to evolve, in terms of both the virtual
product and the physical product.

To achieve this, the virtual product is designed to be composed of a
totally or partially parameterized policy module and a behavior module
also parameterized. The function of the latter is to approximate the
behavior of the physical product, while that of the former is to generate
action commands for the latter to accomplish tasks. The physical prod-
uct, on the other hand, is designed to be composed also of a totally or
partially parameterized policy module whose parameters are a copy of
those of the virtual product’s policy module through update, as shown in
the example of a robot arm EDT in Fig. 8. As for the approximate world,
it is also equipped with a behavior module with similar kind and func-
tion as that of the virtual product.

With such construction design, the upgrade of the virtual product
relies on the model adjustment based on the measurement data collected
from the physical world and the simulation data from the approximate
world, while that of the physical product relies on the update of its
behavior policy and the application of the generated policy.

It is thus required that the physical product is able to apply the
generated policy and that the physical product, the virtual product, and
the approximate world are adjustable through programs. Based on this,
the construction of the dual parts of the EDT is discussed in details in the
following parts.

5.1.1. Physical product construction
In an EDT, the physical product serves as a collector of the physical

Fig. 8. Global design of the EDT.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

9

measurement data and an actuator and verifier of the policy learned by
the virtual product. Thus, the physical product should have the ability to
convert the policy into commands directly applicable to its physical sub-
components and continuously collect measured data about itself and the
surrounding environment. Based on these functional requirements, the
following key points should be well determined in the construction of
the physical product in an EDT.

(1) Measurement data collection and preprocessing

Measurement data of a physical system originate from measurements
from different sensors which, taking the robot arm EDT shown in Fig. 9
as an example, include angular sensors, angular velocity sensors, cam-
era, infrared sensor etc. Therefore, in order to gather sufficient data with
a wide enough range for training the virtual product, the physical
product needs to be equipped with a wide range of accurate sensors.
Meanwhile, as different sensors may have different sample frequency, a
pre-processing module in the edge processing platform layer is needed to
unify different measurement data time line through either unifying the
sample frequency or introducing sample interpolation for measurement
data from sensors with a lower sample frequency. Through this coor-
dination process, the data are collected at the same frequency and could
be merged together to provide the virtual product with a comprehensive
measurement data set of both the physical product and its living
environment.

Moreover, besides the data time line unifying processing, further
data processing is required before the collected data could be trans-
mitted to the virtual product and is utilized for training, due to the ex-
istence of noise, abnormality and misalignment in the preprocessed
data. Thus, in the operation mode, the data flow from the physical world
into the sensors, pass through the pre-processing module, the filter and
alignment module, and finally transmitted to the cloud where they could
be utilized for virtual product training.

(2) Policy update and application

To automatically update the policy of the physical product, a
parameterized policy module which is the same with that of the virtual
product is constructed. At each policy update, the parameters of the
physical product’s policy module are updated with those of the virtual
product’s policy module, and hence update the physical product
behavior. Moreover, as the policy generated by the policy module is
digital, and that the motion or dynamics of a physical system is usually
continuous, converting modules, such as stepping motors, that convert
the digital policy into continuous behavior policy are equipped, as
shown in Fig. 9. These converting modules could convert online the
behavior policy, and the behavior of the robot arm in the example in
Fig. 9 could be controlled directly or indirectly by frequency of the pulse
signal generated by the policy module.

5.1.2. Virtual product construction
In an EDT, the virtual product, composed of a policy module and a

behavior module, serves as both an imitator and an optimal policy
searcher of the physical product. In the operation mode, the behavior
module corrects its behavior based on the measurement data received
from its physical counterpart and the policy module searches for an
optimal behavior policy in the approximate world with the support of
the high performance computer cluster in the cloud. Accordingly, both
the behavior module and the policy module of the virtual product should
be designed as auto-adjustable through deterministic or stochastic
learning programs.

To make the behavior of the virtual product adjustable through
measurement data based learning and simulation based reinforcement
learning in the approximate world, both the policy module and the
behavior module of the virtual product can be modelled in different
parameterized forms: partially parameterized and totally parameter-
ized, as shown in Fig. 10.

Fig. 9. Physical product construction for robot arm EDT.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

10

In the totally parameterized modelling mode, the virtual product is
either modelled by different neural networks according to its desired
function or established by different components, each of which is further
constructed by a neural network imitating its behavior. Such a model-
ling mode normally results in a large number of parameters to be opti-
mized when the behavior of the physical product is complex. Such non-
structural characteristics combined with a large number of adjustable
parameters make the model hard to optimize.

Different from the totally parameterized modelling mode, the
partially parameterized mode introduces the prior information of the
physical product into the modelling process, including the system
structure, some deterministic theory based part models, some manually
behavior fitting functions, etc., as shown in Fig. 10. In this mode, the
non-parameterized approach and the parameterized approach are
combined in two ways. In the first way, part of the model is established
based on theories with some influencing parameters determined from
outside, for example by a neural network. In the second, part of the

model further consists of a non-parameterized or partial parameterized
sub-part and a totally parameterized sub-part. In such a construction
form, parameters to be optimized could be drastically decreased, as the
model is restricted to only some parts of the entire system, and that the
parameterized parts are based on some empirical models or theory based
models. But such modelling mode has its drawbacks compared to the
first mode, such as sophisticated training process, relatively limited
behavior fitting capability.

Hence, in the construction of the virtual product’s behavior module
of an EDT, the extent and the approach of parameterization needs to be
considered delicately based on the features of the system and the
extensibility of it. The same also applies to the construction of the
approximated world models.

5.2. EDT evolution design

Currently, model evolutions are achieved mainly using machine

Fig. 10. Behavior module construction of the EDT.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

11

learning, deep learning, and reinforcement learning approaches. As for
the first two approaches, models are trained mainly through supervised
or semi-supervised mode based on collected data, while model evolution
in the last approach is accomplished based on data collected via in-
teractions between the current agent and the environment. All three
approaches have achieved good results in various tasks. However, in the
evolution process of an EDT, none of these evolution approaches could
succeed alone. Hence, in this paper, a coordinated evolution approach
designed for the EDT is proposed.

An EDT is composed of a virtual product and a physical product.
However, the evolution of an EDT mainly concentrates on the virtual
product side, while the evolution of the physical product is achieved
through a simple transmission of parameters, given that both the virtual
product and the physical product have a policy module with the same
structure. Meanwhile, the parameter transmission could be performed
once the difference between the policy generated by the up-to-date
model and that given by the previous version of model exceeds a
certain threshold. In such a way, the physical product is gradually
evolved, guaranteeing its behavior stability at the same time.

The evolution of the virtual product concerns the evolution of its
behavior module through supervised learning and that of its policy
module through reinforcement learning, which optimizes the behavior
of an EDT according to different tasks. Moreover, as both evolutions take
place simultaneously, a coevolution strategy that coordinates these two
evolution processes also plays a key role in the evolution of the virtual
product.

5.2.1. Supervised learning based behavior module evolution
The purpose of the behavior module evolution is to achieve the

consistency between the behavior of the physical product and that of the
virtual product. Taking the robot arm EDT as an example, in a well
evolved virtual robot arm, each ankle of it should turn exactly the same
angle as the physical robot arm, given the same input command. This
consistency could result in an exact virtualization of the physical robot,
which could serve to optimize the control policy of the real robot
through reinforcement learning.

Therefore the training of the behavior module follows the typical
supervised learning process. The behavior module is established ac-
cording to the Section 5.1. As shown in Fig. 11, with the parameterized
parts built by using neural networks, such process takes the input
commands labelled by the output behavior of the physical product as
training data, and takes the mean square error between the output
behavior of the virtual product and that of the physical product as the
loss function. The parameter optimization is accomplished through
minimizing the loss function by tuning the neural network parameters.

5.2.2. Reinforcement learning based policy module evolution
The reinforcement learning process aims to optimize the policy

adopted by the EDT. Different from supervised learning processes based
on well labelled data, the reinforcement learning process learns through
interaction between the agent and its living environment with no pre-
collected labelled data, and relies on the virtual product behavior
module. The complete training process under the collaborative training
framework is shown in Fig. 12.

As shown in Fig. 12, the exact virtualization of the physical product
allows the creation of multiple cyber spaces, where the policy module
accumulates experience (in the form of collected data, accumulated
parameter gradients, etc.) and updates its policy model through parallel
interaction with different virtual product models with multiple
instances.

In each of the multiple parallel interactions and trainings, the policy
module collects observations of the environment and the reward it gains
after applying its output policy based on previous observations. With
batches of such interaction data collected, the policy module accumu-
lates experience through policy gradient [22] or policy optimization
[17] methods. Finally, with the accumulated experience collected from
different interaction and training processes, the parameters of the policy
module is updated through application of the synthesized gradient or
direct parameter assignment.

5.2.3. Coevolution of the supervised learning and reinforcement learning
The above two processes of the virtual product evolutions are carried

out independently. However, coupling does exist between them. As
stated above, the entire policy optimization process of the policy module
bases on the correctness of the virtualization, namely the virtual product
behavior module. Thus, if the behavior of the behavior module is largely
different from that of the physical product, the behavior policy provided
by the policy module which is trained based on data collected through
simulation interaction between the virtual product in the approximate
world would be useless or even dangerous if applied in real world.
Accordingly, in the EDT evolution process, the evolution of the policy
module will not start until good precision has been achieved by the
behavior module.

Furthermore, as described in the Section 5.1, the EDT is designed to
support, to some extent, system scalability, which indicates that some
functions or parts in the physical system could be modified according to
the needs of product upgrade. Under such condition, the behavior
module first will be updated, followed by the update of policy module, to
adapt to this change, realizing specifically the support of system
extensibility.

6. Case study: EDT based development application in robot arm
control

In this section, an application of an EDT based development in the
robot arm control command calculation is presented. We first introduce

Fig. 11. Supervised learning of behavior module.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

12

Fig. 12. Reinforcement learning of policy module.

It usually takes

months

1. Set up safe activity area by

human

2. Adjust the motion path

step by step and one by one

by human

3. Integrate and debug the

collaboration by human

4. Implement pilot run and

improvement by human

Fig. 13. Manual adjustment of robot arms before equipped in a production line.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

13

a robot arm dynamic model in the production line, followed by the
design to construct an EDT for the robot arm control. Finally, some
related results on the construction process and system performance are
discussed.

6.1. Robot arm control in the production line

Manufacturers around the world are turning to automation to help
solve the labor shortage, increase productivity and improve product
quality. Robot arms provide a cost-effective, flexible, and safe automa-
tion solution for a wide range of production tasks, including machining,
product packaging, product sorting, etc.

At present, most of the busy robots on the production line are based
on manual pre-adjustment, undertaking fixed tasks, and running in the
scope of non-interference. However, with the increasing demand for
personalized and intelligent production, they are required to perform
diversified and complex tasks, constantly undertake and adapt to new
tasks, and can work closely with each other or with people autono-
mously. Hence, they are becoming the IntelliIndusProd that this paper
focuses on.

Normally, a robot arm is composed of five subsystems, namely the
driving system, the transmission system, the actuators, the control sys-
tem, and the detecting system. The control system stands in core position
of a robot arm, as it coordinates the dynamics of motors on different axes
to accomplish a production related task. Hence, the design of this control
system is the core of the design of a robot arm.

However, the control system of most robot arms could only control
the robot arm to perform predefined action sequences which are realized
through manual guidance and adjustment, as shown in Fig. 13. During
this adjustment process, normally, a step-by-step guiding process is
needed. In this process, the robot is controlled by the technician through
a wired controller to accomplish a given task. The commands sent by the
technician through the controller are transformed into executable code
lines and stored in the computer. As the task that a robot arm needs to
achieve is usually delicate with high precision, the human controlled
process needs to be slow enough to protect both the robot and the
product from being damaged. After this controlled process, the com-
mand execution needs to be further accelerated to meet the production
needs. As a result, for each robot arm and each task, it would require
about two to three months for a task oriented adjustment before its

utilization on product line. Furthermore, as the whole adjustment pro-
cess is task oriented, any changes on the pre-defined task would require
a re-adjustment of the robot arm.

With the increasing needs for individualized and small-lot produc-
tion [28], flexibility of the production line becomes more and more
important. Under such circumstances, the above manual adjustment and
re-adjustment of robot arms turn out to be a bottleneck in the efficient
production, where our proposed EDT approach can be utilized. Our
approach applied in the design of the robot arm, allows the robot arm to
adapt itself to different tasks, even changes in the robot arm constitu-
tion. We will describe the construction of a robot arm control EDT based
on our proposed method in Section 6.2.

6.2. Construction of a robot arm control EDT

6.2.1. Constructing a robot arm EDT model
The construction of the virtual product and physical product is

described in Figs. 14 and 15. As the environment is simply an object with
a table and a floor, the approximate world could be established
deterministically.

For the construction of the virtual product, geometric data and dy-
namic characteristic data are first collected through product description
and geometric measurements. These collected data are further utilized
for geometric modelling and dynamic modelling of the virtual product
model. Concerning these two modelling processes, Unity [30] is adopted
as the modelling tool, as it supports both 3D modelling and dynamic
modelling, and hence could combine these two parts together, forming a
unique virtual product model.

Moreover, in the process of dynamic modelling, the aforementioned
partial parameterized model is adopted. In this model, the dynamics of
each arm and joint are determined through dynamic characteristic based
modelling, while the interaction between different arms and joints are
modelled through neural networks. Specifically, the mass, and the
moment of inertia of each arm, the angle range and the motor torque
range of each joint are determined manually, while the joint angles
between successive arms, together with their changing rates are pro-
vided by the neural networks. Based on this, the behavior of a virtual
product model could be described by joint angles, joint angle velocities,
and joint positions.

As for the policy module that is in charge of generating task oriented

Fig. 14. Virtual product model construction process.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

14

control commands, on the other hand, it is also modelled as a neural
network taking the task related information (for example the position of
the cargo in a cargo fetching task) as input and outputs the change rate
of joint angles.

Compared to the construction of the virtual product, that of the
physical product is less complicated. As depicted in Fig. 15, the raw
robot arm is first equipped with different sensors, including goniome-
ters, angular velocity sensors, industrial cameras, etc. These sensors
collect measurement data including but not limited to the joint posi-
tions, the joint angles and the joint angle change rates, which could be
further utilized in the evolution of the virtual product model. Further-
more, the physical product is connected to a computer where the policy
module and the converter are equipped. For these two parts, the former
is only a copy of the policy module of the virtual product, while the latter
converts the target joint angle values generated by the former into target
joint angle command signals which could be directly applied to the robot
arm machine.

6.2.2. Robot arm EDT evolution
With the EDT model constructed above, evolution of the robot arm

EDT is implemented as follows. For the supervised learning based
behavior module evolution, the implementation is simply an application
of the backpropagation process on a structured neural network, with one
neural network part for each correlation between arms. The network
training process is as described in Section 4.2.

The evolution of the policy module is a bit more complicated. In this
case, the Deep Deterministic Policy Gradient (DDPG) [22] algorithm is
adopted as the reinforcement learning algorithm to drive the evolution
of the policy module. The DDPG algorithm originating from Deep Policy
Gradient (DPG) [27] algorithm is proposed for solving reinforcement
learning problems, especially those with a continuous action space,
where an agent needs to learn an action policy π through interaction
with an environment, aiming at maximizing the expected return from
start R1

Rt =
∑

T

i=t

γi−tr(si, ai) (1)

the DDPG algorithm utilizes an actor-critic structure, with the actor π(s;

θπ) serving as the policy function and the critic Q(s, a; θQ) as the action-
value function, parameterized respectively with θπand θQ, where s de-
notes the observation state and a represents the action taken. In the
training process, the θQ is updated via minimizing the expected value of
temporal difference error
Eπ

′

[

Q
(

st, at; θ
Q
)

−
(

r(st, at) + γQ
(

st+1, at+1; θ
Q
))] (2)

with π′ an ε-greedy policy based on policy π, while the policy parameter
θπ is updated in the direction of the deterministic policy gradient
through the equations
δt = r(st, at) + γQ

(

st+1, π(st+1); θ
Q
)

− Q
(

st, at; θ
Q
) (3)

θπ
t+1

= θπ
t +∇aQ

(

s, a; θQ
)

|
s=st ,a=π(st ;θ

π
t)

απ∇θπ π
(

s; θπ
t

)
⃒

⃒

s=st
(4)

With experience replay and target networks mechanisms further
introduced, the DDPG algorithm further stabilizes the algorithm evo-
lution process.

Applying the DDPG algorithm to our case, the observation state s is
designed as follows. The observation state provided by the behavior
module of the virtual product is composed of variables below:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dif f jti = (jointi − tgt)/2

dif f jji = (jointi − joint
0
)/2

dif f thj =
(

tpointj − hpointj

)/

4 j = 1, 2, 3, 4

dif f hjij =
(

hpointj − jointi

)/

4 j = 1, 2, 3, 4
collision

(5)

where jointi denotes the three-dimensional position of joint i, tgt repre-
sents the three-dimensional position of the target, tpointj is the three-
dimensional position of the point j just beneath the object, hpointj is
the three-dimensional position of the point j on the gripper, collision is
the occurrence of collision. By these five parts, the final observation of
the agent is

observation= [s1 s2 s3 s4 s5]
si = [diff jti diff jji diff hji1 diff hji2 diff hji3 diff hji4] ∀i∈{1,2,3,4}

s= [diff th1 diff th2 diff th3 diff th4 collision]

For the design of the reward function r(si,ai) that guides the robot

Fig. 15. Physical product construction process.

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

15

arm to converge to optimal policy through the DDPG algorithm is
designed to guide the gripper to the position below the object with
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

jre1 =

(

∑

3

i=0

‖tpointi − hpointi‖/4

)

jre2 =

(

∑

3

i=0

|hpoint xi|/4

)

jre3 =

(

∑

3

i=0

|hpoint yi|/4

)

jre4 = cos(hvect, tvect)

(6)

where jrei i = 1, 2,3, 4 denotes the reward part i, hpoint x represents the
x coordinate of hpoint, and hpoint y the y coordinate of the hpoint. hvect

represents the normal vector of gripper plane, and tvect is the normal
vector of object-bottom plane.

Finally, these two evolution processes above are combined together
according to the coevolution mode designed in Section 4.

6.3. Results and discussions

Based on the settings described above, in our simulation experiment,
additional Gaussian noise has also been applied to the observation of the
agent, i.e. observation introduced in Section 6.2.2, which forces our
agent to learn the control policy instead of overfitting to a single
application scene. Moreover, with the same models and algorithms,
objects placed at different positions around the robot could be fetched
successfully by the robot arm controlled by our trained policy model.
Results of a single object reaching task is shown in Fig. 17.

Episodic accumulated reward evolution chart suggests the variation
of the accumulated reward value that the agent could gain in each
episode throughout the model evolution process. As expressed in Fig. 16,
at the beginning, the reward seems to be only random noise, which in-
dicates that our designed policy module has not yet capture the rules of
the task and it just behaves randomly. Then, with the progress of evo-
lution, the episodic reward starts to rise with gradually narrowing
variation range. This shows that our policy module has mastered the
optimal control policy, indicating the effectiveness of our approach. This
could be further confirmed by the results on distance variation along
time with a well-trained policy module, as shown in Fig. 17. From
Fig. 17, it could be seen that during the process, with the progress of
time, the distance between the robot arm hand and the bottom of the
object decreases and reaches under 1 cm rapidly. This result shows that
through the control policy learned by the policy module, the robot arm
could accomplish cargo fetching tasks as expected, which confirms the
results above.

7. Conclusion and future work

Motivated by the core idea of developing intelligent industrial
products with autonomous learning and self-adaptation capability, we
proposed an EDT approach. The contribution of this paper mainly
includes:

First, a new concept of EDT has been proposed in this paper via
machine learning approaches, to address the lack of flexibility and
adaptability in traditional industrial product development. With the
newly proposed EDT, more precise virtual product together with
behavior policies with higher performance could be developed.

Second, a coevolution approach of the approximate world and the
product has been proposed, where the former converges to the behavior
of the real world and the latter explores excellent behavior policies that
could be applied in the real world. Moreover, multiple virtual spaces has
been designed, allowing for more efficient and effective design of
different policy models corresponding to different situations, which in
turn could largely improve the adaptability of the established policy
model to varying and uncertain environments.

Third, two evolution paradigms for the virtual product, namely the
simple evolution paradigm and the model evolution paradigm, have
been proposed. The former allows policy improvement via super real-
time deep search based on techniques like Monte Carlo Tree Search,
while the latter adopts reinforcement learning approach to ameliorate
the policy performance of the product, based on recognition abstracted
through supervised learning and unsupervised learning. Moreover, via
transfer learning the gap between the virtual space and the physical
space was merged for application of the learned policy.

Our future work will concentrate on the following two aspects:

(1) the abstract model and evolution formalism which form the
theoretical basis of the intelligent industrial product
development.

(2) the system of swarm intelligent industrial product systems
developed based on EDT, which supports the collaborative
recognition and decision with multiple agents.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

Fig. 16. Episodic accumulated reward evolution.

Fig. 17. Control precision of robot arm in cargo fetching task (distance be-
tween the robot hand and the bottom of the object).

T.Y. Lin et al.

Advanced Engineering Informatics 47 (2021) 101209

16

the work reported in this paper.

Acknowledgement

The research is supported by the National key R&D Program of China
under Grant No. 2018YFB1701600 and the Beijing Institute of Tech-
nology Research Fund Program for Young Scholars.

References
[1] B.H. Li, X. Chai, B. Hou, et al., An Industrial Internet in the Age of “Intelligence+” -

Cloud Manufacturing System 3.0 (Manufacturing Cloud 3.0). International
Conference on Industrial Internet, 2019.

[2] G. Xiong, J. Hou, F. Wang, T.R. Nyberg, J. Zhang, M.C. Fu, Parallel system method
to improve safety and reliability of nuclear power plants, Intell. Control
Automation (2011).

[3] F.-Y. Wang, P.K. Wong, Intelligent systems and technology for integrative and
predictive medicine: An ACP approach, ACM Trans. Intell. Syst. Technol. 4 (2)
(2013) 1–6, https://doi.org/10.1145/2438653.2438667.

[4] E. Lapira, D. Brisset, H. Davari Ardakani, D. Siegel, J. Lee, Wind turbine
performance assessment using multi-regime modeling approach, Renew. Energy 45
(2012) 86–95, https://doi.org/10.1016/j.renene.2012.02.018.

[5] E.H. Glaessgen, D. Stargel, The Digital Twin Paradigm for Future NASA and US Air
Force Vehicles, in: 53rd Struct. Dyn. Mater. Conf. Special Session: Digital Twin,
Honolulu, HI, US, 2012, 1–14.

[6] J. Leng, D. Yan, Q. Liu, H. Zhang, G. Zhao, L. Wei, ... X. Chen, Digital twin-driven
joint optimisation of packing and storage assignment in large-scale automated
high-rise warehouse product-service system, Int. J. Comput. Integrated Manuf.
2019, 1–18.

[7] L.R. Goldberg, The book of why: the new science of cause and effect, Notices Am.
Math. Soc. 66 (07) (2019) 1, https://doi.org/10.1090/noti1912.

[8] R. Rosen, G. von Wichert, G. Lo, K.D. Bettenhausen, About the importance of
autonomy and digital twins for the future of manufacturing, IFAC-PapersOnLine 48
(3) (2015) 567–572, https://doi.org/10.1016/j.ifacol.2015.06.141.

[9] T. Gabor, L. Belzner, M. Kiermeier, M.T. Beck, A. Neitz, A simulation-based
architecture for smart cyber-physical systems, in: IEEE International Conference on
Autonomic Computing, 2016, 374–379.

[10] R. Söderberg, K. Wärmefjord, J.S. Carlson, L. Lindkvist, Toward a Digital Twin for
real-time geometry assurance in individualized production, CIRP Annals 66 (1)
(2017) 137–140, https://doi.org/10.1016/j.cirp.2017.04.038.

[11] F.Y. Wang, D.R. Liu, G. Xiong, Parallel control theory of complex systems and
applications, Complex Syst. Complexity Sci. 9 (3) (2012) 1–12.

[12] D. Silver, A. Huang, C.J. Maddison, A. Guez, D. Hassabis, Mastering the game of go
with deep neural networks and tree search, Nature 529 (7587) (2016) 484–489.

[13] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, et al., Relational
deep reinforcement learning, 2018.

[14] M. Asada, S. Noda, S. Tawaratsumida, K. Hosoda, Purposive behavior acquisition
for a real robot by vision-based reinforcement learning, Mach Learn 23 (2-3)
(1996) 279–303, https://doi.org/10.1007/BF00117447.

[15] M.P. Deisenroth, C.E. Rasmussen, D. Fox, Learning to control a low-cost
manipulator using data-efficient reinforcement learning, Robotics: Science and
Systems VII, 2011, 57–64.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare,
A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (7540)
(2015) 529–533, https://doi.org/10.1038/nature14236.

[17] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, ... D. Silver,
Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:
1707.02286, 2017.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[19] F. Zhang, J. Leitner, M. Milford, B. Upcroft, P. Corke, Towards vision-based deep
reinforcement learning for robotic motion control. arXiv preprint arXiv:
1511.03791, 2015.

[20] F. Zhang, J. Leitner, M. Milford, P. Corke, Modular deep q networks for sim-to-real
transfer of visuo-motor policies. arXiv preprint arXiv:1610.06781, 2016.

[21] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
W. Zaremba, Hindsight experience replay, Adv. Neural Inform. Process. Syst.
(2017) 5048–5058.

[22] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Wierstra,
Continuous control with deep reinforcement learning. arXiv preprint arXiv:
1509.02971, 2015.

[23] S.F. Qin, K. Cheng, Future digital design and manufacturing: embracing industry
4.0 and beyond, Chin. J. Mech. Eng. 05 (2017) 12–14.

[24] J.S. Gero, U. Kannengiesser, The situated function–behaviour–structure
framework, Des. Stud. 25 (4) (2004) 373–391.

[25] H. Zhang, H. Wang, D. Chen, G. Zacharewicz, A model-driven approach to
multidisciplinary collaborative simulation for virtual product development, Adv.
Eng. Inform. 24 (2) (2010) 167–179.

[26] J. Estefan, MBSE methodology survey, Insight 12 (4) (2009) 16–18.
[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic

policy gradient algorithms, in: ICML, Beijing, China, 2014, 21-26 June, 387–395.
[28] C. Yang, S. Lan, W. Shen, G.Q. Huang, X. Wang, T. Lin, Towards product

customization and personalization in IoT-enabled cloud manufacturing, Cluster
Comput. 20 (2) (2017) 1717–1730.

[29] C. Yang, W. Shen, X. Wang, Application of Internet of Things in manufacturing, in
:2016 IEEE 20th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), 2016, May, 670–675.

[30] Unity User Manual, https://docs.unity3d.com/Manual/ModelingOptimizedCharac
ters.html.

[31] C. Yang, P. Chi, X. Song, T.Y. Lin, B.H. Li, X. Chai, An efficient approach to
collaborative simulation of variable structure systems on multi-core machines,
Cluster Comput. 19 (1) (2016) 29–46.

T.Y. Lin et al.

