
A Novel Bearing Fault Diagnosis Method based on
Stacked Autoencoder and End-edge Collaboration

Chen Yang
School of Cyberspace Science and Technology

Beijing Institute of Technology
Beijing, P.R.China

yangchen666@bit.edu.cn

Zou Lai
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, P.R.China

laizou1002@163.com

Yingchao Wang
School of Cyberspace Science and Technology

Beijing Institute of Technology
Beijing, P.R.China
wyc mail@163.com

Shulin Lan*
School of Economics and Management

University of Chinese Academy of Science
Beijing, P.R.China

Corresponding author: lanshulin@ucas.ac.cn

Lihui Wang
Department of Production Engineering
KTH Royal Institute of Technology

Stockholm, Sweden
lihuiw@kth.se

Liehuang Zhu
School of Cyberspace Science and Technology

Beijing Institute of Technology
Beijing, P.R.China

liehuangz@bit.edu.cn

Abstract—The deep learning based fault diagnosis methods
show excellent performance. However, cost and delay factors
make it difficult for their widespread industrial application.
Microcontroller units (MCUs) in industrial equipment have the
advantages of real-time response and high reliability and usually
have some redundant computational resource. However, even
lightweight deep learning models cannot be deployed in MCUs
due to severely limited computational resources. This paper
proposes an end-edge collaborative fault diagnosis framework,
by combining real-time decision-making at the end with dynamic
adaptive diagnosis at the edge to improve inference performance.
The model’s minimum input size is deduced through theoretical
analysis of the bearing working mechanism, and to make the model
suitable for MCUs, we leverage the differential characteristics
of the bearing vibration data and proposed a TinyML model
based on stacked autoencoders. The pre-autoencoder extracts
differential features, while the post-autoencoder performs fault
diagnosis based on pooled differential features. Finally, the
stacked-autoencoder model and collaborative framework were
evaluated using the CWRU bearing dataset, achieving 384x
compression in parameter size and 100% accuracy for binary
fault classification, requiring only 6.44kB RAM. With the dynamic
adaptive collaboration mechanism, the proposed fault diagnosis
framework can reduce the edge load by approximately 94%.

Index Terms—Fault diagnosis, end-edge collaboration, TinyML,
deep learning, stacked autoencoder, differential feature

I. INTRODUCTION

Rolling bearings, a key component of rotating machinery, play
an extremely important role in modern industries such as wind
power generation and rail transportation, where bearing failures
have been shown to be a major cause of machine breakdown
and even more serious accidents [1]. Therefore, there is an
urgent need for continuous monitoring and highly accurate fault
diagnosis of bearings in high-risk or high-value equipment.

Deep learning has been successfully applied in the field of
fault diagnosis because of its powerful feature representation
ability, however, there still exist problems:

1) The contradiction between inference accuracy and la-
tency: Existing research usually employs large-scale deep
learning models to achieve high inference accuracy. The
cloud/edge based fault diagnosis models can achieve high

accuracy but incur large delays and are not suitable for
time-critical fault detection applications.

2) Ineffective utilization of the physical characteristics of
faults: Repetitive pulses are typical features of faulty
bearings [2], but existing studies usually try to improve
model performance by adjusting the neural network,
without considering important periodic physical features
caused by bearing faults.

3) Difficulty in using computational resources of massive end
devices: Shop floors have massive control chips such as the
microcontroller unit (MCU) and digital signal processor
in industrial facility, but it is difficult to run deep learning
models or even lightweight ones in an end device because
of severely limited computational resources.

The tiny machine learning (TinyML) based inference can
be accomplished in the MCU, which brings great advantages
in terms of timeliness, cost and privacy [3]. In this paper, we
proposed a novel fault diagnosis method based on TinyML
and end-edge collaboration to exploit massive and distributed
end computing resource, and to adaptively use edge computing
for collaborative fault diagnosis with low latency and high
accuracy. Our contributions include:

1) By designing the TinyML diagnosis model at the end,
computational resource of massive end devices can be
effectively utilized, and the response time is significantly
reduced. Edge computing is adaptively used to conduct
inference with bigger models to increase the diagnosis
accuracy.

2) Combining the physical vibration characteristics of faulty
bearings, the minimum required number of input nodes
(sampling points) for the fault diagnosis model is theo-
retically determined, and the differential vibration char-
acteristics are analyzed to provide theoretical support for
accurate diagnosis.

3) Considering extremely limited end computing resource, a
bearing fault diagnosis model based on stacked autoen-
coders is designed for the MCU, and the peak RAM
occupation is dramatically reduced through network struc-

ture optimization. It realizes effective usage of remaining
resource of massive end devices for real-time prediction.

The rest of this paper is organized as follows: Section II
introduces related work; Section III proposes a fault diagnosis
framework with collaborative edge-end processing; Section IV
analyzes the number of sampling points required and differ-
ential characteristics of bearing vibration data and proposes a
fault diagnosis model based on stacked autoencoders; Section
V verifies the model and the collaborative framework in terms
of accuracy and time delay based on the Case Western Reserve
University (CWRU) dataset; Section VI concludes the paper
with final remarks.

II. RELATED WORK

A. Tiny machine learning (TinyML)
Lin et al [4] proposed a framework for jointly designing

efficient neural architecture (TinyNAS) and lightweight in-
ference engine (TinyEngine) to implement ImageNet-scale
inference on microcontrollers. Liu et al [5] replaced each large
dense layer of DNN with three small cascaded sub-layers,
therefore replacing the computation/storage of a large matrix
with that of small ones, and designed a new rank-restricted
back-propagation algorithm to enable the deployment of tiny AI
models onto low-cost and low-power devices. An autoencoder
with an additional layer for online fine-tuning is proposed in [6].
A common model is first trained and after model deployment,
the end device performs incremental learning based on the
stream data collected in real time to deal with the concept
drift.

Scholars have conducted intensive research on neural network
optimization and compression to minimize the resource con-
sumption of the TinyML model. However, current optimization
methods mostly involve neural network improvement and
negelect to incorporate the useful physical characteristics of
faulty rolling bearing.

B. Edge-cloud collaborative fault diagnosis

Yang et al [7] proposed a cloud-edge-end collaboration
framework for cloud manufacturing, and analyzed the de-
ployment and update mechanism of deep learning models
to effectively support fast response and high-performance
decision-making for industrial robots. Shao et al [8] proposed
Branchy-GNN for efficient graphical neural network (GNN)-
based point cloud processing by leveraging edge computing
and branch networks with early exiting to significantly reduce
communication overhead as well as latency. Fang et al [9]
proposed an on-demand DNN model inference system for
industrial edge nodes with knowledge distillation and early
exit, which improves inference latency and memory usage by
training compact edge models under the supervision of large
complex models and using an early exit mechanism in the
inference phase.

Current studies mainly focus on the collaboration mecha-
nisms between the cloud, edge and smart end devices, and does
not deal with effective utilization of massive resource-limited
MCUs in industrial systems.

III. END-EDGE COLLABORATIVE FAULT DIAGNOSIS FRAMEWORK

A. Fault diagnosis framework based on end-edge collaboration
We propose an end-edge collaborative fault diagnosis frame-

work, shown in Fig.1. TinyML models and a high performance
model are deployed at the end devices and the edge node
respectively. End-edge collaboration for fault diagnosis has
two operation modes: end decision-making and edge decision-
making. The TinyML based inference is first conducted at
the end node for decision making of fault diagnosis. Whether
to use the local inference result is judged by the dynamic
constraint algorithm in Section III-B. The second mode is end-
edge collaborative decision-making. When the end inference
result does not satisfy the two conditions, the data is uploaded
to the edge node, which performs inference and judges whether
the two conditions are satisfied.

Fig. 1. End-edge collaborative fault diagnosis framework.

B. End-edge coordination mechanism

Industrial fault diagnosis demands accuracy and low delay.
Edge computing alone can’t ensure rapid inference due to
calculation delay and network instability. TinyML models on end
devices allow for rapid response but may lack precision. Thus,
we propose an end-edge collaborative decision-making algorithm
that considers both the constraints of delay and confidence.

After inference, the end node calculates output confidence

C(z) =
ez

K∑
j=1

ezj
(1)

where z is the output of the neural network, j is the index of
fault classification, and K is the number of fault classes.

To enable end-edge coordination, the edge node can utilize
larger and more powerful deep learning models and conduct on-
demand fault diagnosis to its subordinate end nodes in a dynamic
and adaptive manner. The end device/equipment first calculates
the confidence of each prediction. When the confidence of
a prediction on an end node is lower than a threshold, the
confidence is reported to the edge node, which will conduct
inference instead according to the confidence level and send the
results back, and vice versa. The edge node can perform more
accurate inferences and identify specific fault categories (such
as inner/outer race faults, ball faults, cage faults, etc.).

Algorithm 1 is deployed on each end node. de is the
maximum allowable latency for the current fault diagnosis

Fig. 2. End-edge dynamic collaborative decision-making.

task. The response time dr of the edge node is determined by
the delay of the end-edge bidirectional communication under
the current network state and the inference time of the edge
node. T1 and T2 indicate a standard threshold and a critical
threshold of prediction confidence. If the inference confidence
of an end node exceeds T1, it indicates that the inference
result is reliable. If the inference confidence falls within the
range between T1 and T2, it implies that the inference result’s
reliability is somewhat diminished but still acceptable. However,
if the inference confidence is lower than T2, it indicates that
the inference result is highly unreliable.

Algorithm 1: End work under delay and confidence
constraints.

1 Execute the inference.
2 Calculate the confidence level C(z).
3 Obtain the response time dr and constraint time de for

this fault diagnosis task.
4 if dr < de then
5 if C(z) ≥ T1 then
6 Local decision and return.
7 else if T2 ≤ C(z) < T1 then
8 Local decision.
9 Upload confidence to edge node, and return.

10 else
11 Issue an interrupt request to the edge.
12 end
13 else
14 if C(z) ≥ T1 then
15 Local decision and return.
16 else if T2 ≤ C(z) < T1 then
17 Local decision.
18 Upload confidence to edge node, and return.
19 else
20 Local decision.
21 Issue an interrupt request to the edge.
22 end
23 end

Fig. 2 illustrates the collaborative decision-making process
under the constraints of delay and confidence. The labels “End”
and “Edge” in the figure signify that the end and edge models
are employed for decision-making, respectively. The label “End
First” implies that the inference result of the end node model
is utilized for decision-making before obtaining the decision

results from the edge node. This is due to the fact that even
when the confidence level falls within the range between T1

and T2, the current end node’s reliability may have slightly
decreased, but it is still dependable overall. By the “End First”
mechanism, the speed of end decision-making is combined
with the reliability of edge decision-making, allowing end
devices to make decisions rapidly. Even in rare instances where
the prediction result of the end node is incorrect, this error
can be promptly detected and rectified by the edge node. It
should be noted that the suffix ‘INT’ in the label denotes an
interrupt request. In scenarios where the inference confidence
falls between the thresholds T1 and T2, intervention from the
edge node remains necessary. However, the end node only
transmits the confidence level instead of interrupt requests, to
preserve the edge node’s real time computing resources for
more pressing and significant situations.

Algorithm 2: Real-time response of edge nodes.

1 while True do
2 Record diagnostic requests from end nodes in the

diagnosis queue Q.
3 Refresh EC in real time while any end node

uploads the inference confidence.
4 end

Algorithm 3: Dynamic diagnosis of edge nodes.

1 while True do
2 while Q is non-empty do
3 Sort Q in ascending order based on confidence

level.
4 Diagnose the first request in the queue Q.
5 Send this diagnostic result to the end node.
6 Mark the diagnosed node in Q as empty.
7 end
8 Diagnose an end node according to Argmin

i=1,2...M
(EC).

9 Send this diagnostic result to the end node.
10 Mark the diagnosed node in EC as empty.
11 end

Algorithms 2 and 3 are executed at edge nodes by multi-
threading. Algorithm 2 is used to respond to requests of end
nodes in real time, including updating interrupt sequence Q
and confidence set EC for end nodes. EC = {C(z)}, where
C(z) is the inference confidence of the z-th end node. The
edge server dynamically diagnoses the end nodes according
to Algorithm 3. M is the number of end devices under this
edge node. The interrupt mechanism in the edge node ensures
that the emergency request of the end node can be responded
immediately.

By utilizing Algorithm 1, 2, and 3, dynamic end-edge
collaboration that satisfies confidence and delay constraints can
be accomplished. This approach enables the efficient utilization
of computing resources of end devices while reducing the
workload on edge nodes.

IV. TINYML BASED FAULT DIAGNOSIS MODEL

A. Model setting based on periodic fault characteristics

It is necessary to compress the fault diagnosis model as
much as possible while ensuring the necessary performance to
fit it into the highly resource-limited MCU. Current TinyML
studies mostly tried to improve the model itself and does not
effectively utilize the physical characteristics of bearing faults.

When the bearing works normally, the main frequency of the
vibration is the inherent frequency of the bearing components,
which shows good periodicity. For a faulty bearing, when
mechanical contact occurs in the damaged position, a local
impact force will be generated, forming pulse incentives and
stimulating the vibration of bearing components. In other words,
the vibration frequency of irregular shock events varies when
different parts of the bearing (outer raceway, inner raceway
or roller) fail. The characteristic frequency can be obtained
from the analysis of motion relationship between the bearing
components based on the rotational speed, the shape and the
size of the bearing parts [10].

According to the parameters of the bearing used in the
CWRU dataset, the characteristic frequencies of the driving
end (DE) at the speed of 1797 rpm can be calculated as:
fi = 162Hz, fo = 107Hz, fe = 11.93Hz, and fb = 141Hz.
fi, fo, fe, and fb are ball pass frequency inner raceway, ball
pass frequency outer raceway, fundamental train frequency and
ball spin frequency respectively. The minimum difference of
characteristic frequencies is ∆fmin = fi − fb = 21Hz.

From the sampling theorem for frequency domain, the
frequency resolution can be caculated as

Fr =
fs
N

(2)
where fs is the sampling frequency, and N is the number of
sampling points in each cycle. For the CWRU dataset, fs is
12 kHz. The frequency resolution needs to be no greater than
the minimum difference of the characteristic frequencies, so

N =
fs
Fr

≥ fs
∆fmin

≈ 572 (3)

Therefore, the number of sampling points in each cycle
should not be smaller than 572, otherwise the resolution
for frequency domain cannot support the TinyML model to
accurately classify fault classses. It means that the input size
of the autoencoder should not be less than 572.

B. Fault diagnosis model based on stacked autoencoder

Stacked autoencoders is a deep neural network created
by using autoencoders as building blocks. Compared with
traditional autoencoder, stacked autoencoders use the layer-
by-layer pre-training and fine-tuning approach to improve the
convergence speed and realize effective extraction of more
abstract and complex fault feature.

For the neural network consisting of two cascaded autoen-
coders, its training is divided into two stages. In the first stage,
the front autoencoder is trained with the original vibration data
X under normal operating conditions, and the training objective
is to minimize the reconstruction error e. In the second stage,

the second autoencoder is trained with the results em from
pooling operation of the front-autoencoder output under normal
operating conditions, and the training goal is to minimize the
reconstruction error of the input data em. Similarly, the training
process of the n cascaded autoencoders is divided into n stages.

In order to further amplify the differential features, the output
value of the previous model is maximally pooled.

ê(t) = max
i=t,t−1,...,t−k

e(t) (4)

where e(t) is the Pre-MSE at moment t, ê(t) is the Pre-MSE
value at moment t after pooling, and k is the pooling depth.

For the network with two stacked autoencoders, n1 consec-
utive samples are used as the input of the front autoencoder,
and the MSE of this autoencoder the feature values e(t). Each
k consecutive feature values are pooled maximally to obtain
em(t), which is used as the n2 input of the back autoencoder.
The MSE of the back autoencoder is used to determine whether
a fault occurs. A single differential feature is calculated from
the n1 original data, so after replacing the original vibration
signal with differential features and pooling, the perceptual
field of a single input node of the neural network is increased
from 1 to k × n1. The MSE value at the output of the post
network is determined by the continuous raw vibration data
n1 × n2 × k.

For the CWRU dataset, taking the autoencoder with 3
hidden layers as an example, the number of input nodes
is ceil(

√
572) = 24 if two autoencoders are cascaded and

ceil(3
√
572) = 9 if three autoencoders are cascaded. Assume

that the end device can calculate 6.72 MFLOPs and the RAM
is 196kB (a common microcontroller). A further analysis of
the number of cascaded autoencoders is shown in the table,
taking a symmetric autoencoder with the number of neurons
in each layer scaled down in turn to 2/3 that of the prior layer
in the encoding stage and a pooling depth 4 as an example.

TABLE I
COMPARISON OF RESOURCE CONSUMPTION OF DIFFERENT MODELS

Cascade Depth Input size FLOPs Parameters RAM Delay

1 572 631828 633419 2475kB 94.03ms
2 24 2359296 1648 6.44kB 351.09ms
3 9 60742656 543 2.13kB 9039.09ms

As can be seen from the Table I, the stacked-autoencoder
network with two autoencoders reduces the RAM occupation by
99.74% through changing the space with time, compared to a
traditional autoencoder. Although the inference time increases,
it is still within an acceptable range. The network with 3
cascaded autoencoders results in further reduction in RAM
occupation by 66.93%, but the amount of calculations shows a
geometric increase, and the time of a single inference increases
significantly from 351.09ms to 9039 ms. In summary, in this
paper, a 2-autoencoder cascade model is used and the network
structure is designed as shown in Fig. 3.

Through cascading, the receptive field [11] of the post
autoencoder is increased, and the MSE of each pre-autoencoder
output can indirectly reflect the features contained in 96

Fig. 3. Model structure with stacked autoencoders.

consecutive pieces of input data. Using two autoencoders, each
with 24 input nodes, the MSE values of post-autoencoder
output are determined by 2304 consecutive original data points
(24× 24× 4). Thus, the size of the input nodes is significantly
reduced by using cascading. For TinyML, the biggest limitation
in the inference stage for end hardware is the peak memory
consumption, which is positively correlated with the number of
input nodes, and the model depth does not significantly affect
the peak memory consumption [4]. By cascading, the input
size is greatly reduced, which in turn significantly reduces the
peak memory occupation.

In the inference stage, during normal operating conditions,
the pre-autoencoder can well reconstruct the vibration signal
and the Pre-MSE can be stable at a smaller value, and the post-
autoencoder can well reconstruct its input and the Post-MSE
is also small. If a fault occurs, the distribution of the vibration
signal changes, the output of the pre-autoencoder reflects larger
differential characteristics, and the Pre-MSE will fluctuate greatly,
and the post-autoencoder has difficulty to reconstruct its input,
so the Post-MSE is larger. Therefore, accurate fault diagnosis can
be performed by setting a reasonable threshold for Post-MSE.

It is worth noting that during the training process, the
vibration signal after being sliced is shuffled. This means that
only 24 consecutive samping points of the vibration signal need
to be collected each time. After the pre-autoencoder reasoning
ends, the memory can be released. This feature is of great
significance for MCUs with severely limited memory resource.

V. EXPERIMENT

The proposed methodology was validated on the CWRU
bearing dataset, which includes normal conditions and three
types of failures (outer race, inner race, and ball) with three
damage depths each. Signals were sampled at 12 kHz, 1800 rpm.
60% of the dataset was used to train the stacked autoencoders.

A. Fault diagnosis experiment using stacked autoencoders
Referring to the STM32F407 MCU commonly used in

industry, with a clock frequency of 168MHz and 192 kB RAM,
the redundant 20% of resources can be allocated to deploy a
fault diagnosis algorithm. For the TinyML model, the MCU

delivers about 6.72 MFLOPS computing capability and 38.4
kB RAM. Table I shows calculations and parameters of three
stacked autoencoder models. The traditional model requires
2475 kB RAM, while typical MCUs only have a few hundred
kB. Conversely, the stacked autoencoder converts space to
time, reducing parameters to 6.44 kB, enabling deployment on
common microcontrollers. The inference time of 351.09 ms
meets bearing fault diagnosis requirements.

Further, the CWRU dataset is merged into a binary clas-
sification dataset. The merged data set includes two parts,
which respectively contain healthy samples and fault samples
in various situations (speed, load, fault location, fault level).
The merged dataset is divided into samples (each with 24
points) for the experiments.

The Model structure shown in Fig. 3. The Pre-autoencoder
and Post-autoencoder share same structure with 24, 16, 12,
16, and 24 neurons. The pooling depth is 4. We shuffle all
samples before training, use the Adam optimization algorithm
for training, and lr=0.001. The MSE is used as loss function.

(a) Kernel density of MSE (b) ROC curve

Fig. 4. The MSE and ROC of traditional stacked autoencoders

TABLE II
THE RESULT OF TRADITIONAL STACKED AUTOENCODERS

Datasets Healthy Fault FP TN Precision

Training set 101844 0 947 0 /
Test set 25461 265218 718 5304 98.00%

Fig. 4 is the MSE kernel density and ROC curve for
traditional stacked autoencoders. Fig. 4(a) shows significant
overlap between normal and abnormal samples, making it
impossible to distinguish with fixed threshold. In contrast, Fig.
5 depicts results of proposed stacked autoencoders, with no
overlap in MSE values between normal and abnormal samples,
allowing for complete distinction with threshold.

(a) Kernel density of MSE (b) ROC curve

Fig. 5. The MSE and ROC of cascade stacked autoencoders

B. End-edge collaborative fault diagnosis

The previous experiments show 100% binary classification
accuracy achieved for CWRU dataset using improved stacked

TABLE III
THE RESULT OF CASCADE STACKED AUTOENCODERS

Datasets Healthy Fault FP TN Precision

Training set 2120 0 0 0 /
Test set 1592 7735 0 0 100.00%

autoencoder with only 24 input nodes. However, dataset
uses high-accuracy sensors and circuits not practical for cost-
sensitive industrial environments. Thus, added Gaussian noise
to dataset and used for model training and inference to analyze
impact of signal-to-noise ratio (SNR).

(a) Model accuracy at different SNR (b) Fault diagnosis delay

Fig. 6. Fault diagnosis based on end-edge collaboration.

Fig. 6(a) shows that the accuracy of inference decreases
rapidly to an unusable level when SNR<1. Specifically,
accuracy is 90.3% at SNR=1 and 100% at SNR≥ 6. The
proposed end-edge collaboration framework is validated using
vibration signals with SNR=1 and end-model accuracy of
90.3%. Assuming 200 end devices under an edge node and
the edge node can diagnosis 10 end nodes per second. It takes
20 s for the edge node to diagnose all end nodes once, with
an average diagnosis latency of 10 s for each terminal node.

Based on Algorithm 1, 2, and 3, the kernel density plot
of the diagnosis latency of edge node is showen in Fig. 6(b).
Experimental results show that edge nodes efficiently prioritize
high-risk end nodes with over 60% of samples’ diagnosis latency
less than 0.5 s. For all end nodes, the max diagnosis delay is
less than 12 s, and the average latency is 0.597 s. Compare to
sequential diagnosis tasks, the proposed end-edge collaborative
algorithm can effectively reduce edge computing load by 94%
while maintaining the same average diagnosis latency.

VI. CONCLUSION

Traditional rolling bearing fault diagnosis methods need to
consume a large amount of computing resources. To address
this problem, this paper proposes an end-edge collaborative
bearing fault diagnosis framework, which can effectively utilize
the remaining computing resource of the end device and
greatly reduces the cost for using the fault diagnosis model.
To address the problem of extremly limited resources and
difficult model deployment, we propose stacked autoencoders,
which adopt a reduce-breadth-with-depth approach to reduce
memory consumption and achieve 100% accuracy of binary
fault classification on the CWRU standard dataset by cascading
two autoencoders, each with only 24 input nodes.

Considering the high sensor accuracy of CWRU dataset, the
effects of different signal-to-noise ratios on model accuracy are
compared by artificially adding Gaussian noise. The dynamic

end-edge collaboration algorithms proposed are validated with a
signal-to-noise ratio of 1 and the accuracy of end fault diagnosis
90.3%. The results show that the end-edge collaborative
framework proposed effectively utilizes the residual computing
resource of end devices in industrial systems and achieves high
fault diagnosis accuracy at an exceptionally low cost.

Different from conventional model compression techniques
(such as pruning and distillation), this paper effectively utilizes
the difference in physical characteristics of normal and faulty
bearing vibration signals, and proposes an ultra-lightweight
model through an innovative network structure design. It means
that in the future, we can still further compress the proposed
stacked autoencoders by pruning and distillation methods.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China under Grant 2021YFB1715700, in part
by the National Natural Science Foundation of China under
Grant 62103046, 72192844 and 72201266, in part by the
Fundamental Research Funds for the Central Universities under
Grant E1E40805X2.

REFERENCES

[1] Y. He, M. Hu, K. Feng, and Z. Jiang, “Bearing Condition Evaluation
Based on the Shock Pulse Method and Principal Resonance Analysis,”
IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.
1–12, 2021.

[2] R. N. Toma, A. E. Prosvirin, and J.-M. Kim, “Bearing Fault Diagnosis
of Induction Motors Using a Genetic Algorithm and Machine Learning
Classifiers,” Sensors, vol. 20, no. 7, p. 1884, Jan. 2020.

[3] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “MicroNets: Neural
Network Architectures for Deploying TinyML Applications on Commod-
ity Microcontrollers,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 517–532, Mar. 2021.

[4] J. Lin, W.-M. Chen, Y. Lin, j. cohn, C. Gan, and S. Han, “MCUNet:
Tiny Deep Learning on IoT Devices,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp. 11 711–
11 722.

[5] H. Liu, W. Ziping, H. Zhang, B. Li, and C. Zhao, “Tiny Machine Learning
(Tiny-ML) for Efficient Channel Estimation and Signal Detection,” IEEE
Transactions on Vehicular Technology, pp. 1–1, 2022.

[6] H. Ren, D. Anicic, and T. A. Runkler, “TinyOL: TinyML with Online-
Learning on Microcontrollers,” in 2021 International Joint Conference
on Neural Networks (IJCNN), Jul. 2021, pp. 1–8.

[7] C. Yang, Y. Wang, S. Lan, L. Wang, W. Shen, and G. Q. Huang,
“Cloud-edge-device collaboration mechanisms of deep learning models for
smart robots in mass personalization,” Robotics and Computer-Integrated
Manufacturing, vol. 77, p. 102351, Oct. 2022.

[8] J. Shao, H. Zhang, Y. Mao, and J. Zhang, “Branchy-GNN: A Device-
Edge Co-Inference Framework for Efficient Point Cloud Processing,”
in ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Jun. 2021, pp. 8488–8492.

[9] W. Fang, F. Xue, Y. Ding, N. Xiong, and V. C. M. Leung, “EdgeKE:
An On-Demand Deep Learning IoT System for Cognitive Big Data on
Industrial Edge Devices,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 9, pp. 6144–6152, Sep. 2021.

[10] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics—A
tutorial,” Mechanical Systems and Signal Processing, vol. 25, no. 2, pp.
485–520, Feb. 2011.

[11] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the Effective
Receptive Field in Deep Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems, vol. 29. Curran Associates,
Inc., 2016.

