Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 1

Knowledge Guided DRL for Intelligent
Reconfiguration and Scheduling in Customized
and Personalized Manufacturing Workshop

Shulin Lan, Member, IEEE, Yinfei Jiang*, Chen Yang*, Member, IEEE, Lihui Wang,
George Q. Huang, Fellow, IEEE, Weiming Shen, Fellow, IEEE, and Liehuang Zhu, Senior Member, IEEE

Abstract—To meet personalized user demands,
customized and personalized production has become an
effective manufacturing paradigm. However, wired
network connections inhibit flexible production line
reconfiguration and current DRL methods cannot
converge and obtain eligible scheduling results for
customized and personalized production (CPP) due to the
high-dimensional solution space and the negligence of
significant machine reconfiguration time. To address this
challenge, we first propose a wireless manufacturing
system framework to support ultra-flexible reconfiguration
and resource scheduling. Next, we build a reconfiguration
oriented scheduling model to reflect the significant impact
of reconfiguration time. Then, we design a Knowledge
Guided Deep Reinforcement Learning (KGDRL) algorithm
to effectively solve the CPP scheduling problem facing the
dimension explosion problem. The knowledge guidance
incorporates reconfiguration time and machine workload
to significantly reduce the feasible action space, enabling
the rapid convergence of KGDRL. The experiment results
show that our approach provides a robust and scalable
solution and obtains shorter total makespan of whole
production during scheduling.

Keywords—customized and personalized production,
reconfigurable manufacturing system, deep reinforcement
learning, knowledge guidance, resource scheduling

|. Introduction

Customized and personalized products (CPPs), which best
meet individual needs, have gradually become the main

This work was supported in part by the National Key R&D Program
of China under Grant 2021YFB1715700; in part by the National
Natural Science Foundation of China under Grant 62103046,
72201266 and 72192843. (Corresponding author: Chen Yang, Yinfei
Jiang)

Shulin Lan, and Yinfei Jiang is with the School of Economics and
Management, University of the Chinese Academy of Sciences, Beijing,

China. (e-mail: lanshulin@ucas.ac.cn; jiangyinfei22@mails.ucas.ac.cn).

Chen Yang, and Liehuang Zhu are with the School of Cyberspace
Science and Technology, Beijing Institute of Technology, Beijing,
China. (e-mail: yangchen666@bit.edu.cn; liehuangz@bit.edu.cn).

Lihui Wang is with the Department of Production Engineering, KTH
Royal Institute of Technology, Stockholm 10044, Sweden (e-mail:
lihuiw@kth.se).

George Q. Huang is with the Industrial and Systems Engineering at
The Hong Kong Polytechnic University, Hong Kong (e-mail:
gg.huang@polyu.edu.hk).

Weiming Shen is with the State Key Lab of Digital Manufacturing
Equipment and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: wshen@ieee.org).

business model for many companies and a key factor in their
competitiveness [1]. Traditional discrete manufacturing
systems typically rely on rigid production lines, where each
machine is assigned to a fixed processing stage and production
jobs are executed sequentially. However, such systems often
struggle to meet the growing demand for flexibility in small-
batch, multi-variety production. To address these challenges,
lean manufacturing workshops increasingly adopt
reconfiguration scheduling as an effective solution. This
approach optimizes the use of limited cost and space resources
by enabling a single production system to flexibly handle a
wide variety of jobs under changing production conditions. To
further illustrate how reconfiguration improves production
efficiency in such settings, we take sand core manufacturing
in the foundry industry as a representative example, as shown
in Fig. 1. A typical production process includes three stages:
material handling, dip coating, and polishing. Since the
handling operation is relatively short while the dip coating
process involves longer waiting times, machine idleness and
task queuing often occur at the coating stage. Without
reconfiguration, some machines (e.g., M2 and M5) would
remain idle while multiple jobs are waiting to be processed.
By enabling reconfiguration, idle machines from the handling
and polishing stages can be reassigned to the coating stage,
effectively reducing machine idleness and improving
processing efficiency.

Processing

Stage Material Handling Surface Polishing

M1 ;‘5.

Dip Coating

" . U
Reconfigurable

Production

® i ® u

I Ia
| |
. .

Machine Status:

. Busy T‘\
) M2
O e Py

Reconfig)

[» O M3

eme | Reconfig 9
-

J3:02 (on M3)
4:02

15:02

Job

J1:
Operation J1:01 (on M1)

J2:03 (on M4)

Fig. 1. Reconfiguration decision in sand core CPP production

However, reconfigurable production introduces new
challenges. Machines must be able to transition smoothly
between different types of operations to meet the diverse
requirements of various job types. Before performing a
specific operation, each machine must undergo a
reconfiguration process, which typically involves tool

mailto:lanshulin@ucas.ac.cn
mailto:liehuangz@bit.edu.cn
mailto:lihuiw@kth.se
mailto:gq.huang@polyu.edu.hk

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 2

switching, material preparation, and parameter adjustments.
These steps incur a non-negligible reconfiguration time, which
is often overlooked in existing models. Moreover,
reconfiguration time is highly dynamic and stage-dependent.
For example, reconfiguration from handling to dip coating is
relatively fast due to shared tools and materials, while
transitioning from coating to polishing takes significantly
longer. Even within the same coating stage, variations in
product color resulting from multi-variety production can lead
to considerable differences in reconfiguration time. This
variability in reconfiguration time introduces heterogeneity
and uncertainty into the scheduling environment, posing
considerable challenges for the deployment of efficient
learning-based scheduling algorithms. Therefore, an effective
production scheduling strategy is essential to account for the
impact of reconfiguration and ensure the overall efficiency of
the CPP production process.

Cloud Manufacturing systems (CMfg) have long been
considered a practical framework to traditional production
models due to their features such as low-latency connectivity,
full-shop collaboration, and real-time data sharing. However,
current CMfg cannot efficiently handle a group of CPP jobs
submitted by individual customers due to the following
reasons: 1) Wired network connections in existing
manufacturing systems limit machine mobility and hinder
flexible reconfiguration of production lines. State-of-the-art
wired manufacturing networks primarily focus on flexibility
design to enhance manufacturing efficiency [2-4]. Despite
these advancements, such systems remain unable to support
CPP scheduling due to limitations in machine mobility.
Without sufficient space and function flexibility, idle
machines could not be dynamically reconfigured to busy
stages to accelerate the processing. 2) Existing scheduling
models neglect the variety of reconfiguration time during
the scheduling process. These models are established to
address challenges such as reducing energy costs [5] and
managing workforce constraints [6]. Reconfiguration time can
vary significantly across different machines, potentially
leading to long processing time and, as a result, lower
production efficiency in the workshop. 3) Current
scheduling methods fail to obtain convergent solutions
under the dynamic nature and dimensional complexity of
the CPP problem. While machine learning algorithms and
heuristic approaches can produce near-optimal results for most
traditional flexible job-shop scheduling problems, they often
struggle in more complex scenarios. These methods primarily
address heterogeneous job types, such as batch processing [7],
job splitting [8], and random job arrivals [9]. However, they
largely overlook the reconfiguration status of machines, which
is critical for effective CPP scheduling. This oversight,
combined with the explosion of computational dimensions
introduced by machine reconfigurability, makes it challenging
to develop robust and efficient scheduling strategies.

As a result, this study aims to propose an intelligent
reconfigurable resource scheduling method for ultra-flexible
wireless CPP workshops in discrete manufacturing with multi-
variety, small-batch production. The main contributions of this

paper are summarized as follows:

1) An edge-computing based ultra-flexible CMfg
framework is proposed to support smart adaptive
reconfiguration and resource scheduling, according to CPP
job requirements. Idle machines can adjust their scheduling
status and move to busy production lines and process the
corresponding CPP jobs with the support of wireless
connections, enabling them to meet the diverse demands of
CPP jobs.
2) A reconfiguration-oriented scheduling model is
established to quantify the impact of reconfiguration time
on the scheduling process. The model incorporates CPP
jobs, reconfigurable production machines, different
processing speed, varying reconfiguration time, and
optimization objectives to reflect how reconfiguration
influences production. Once a machine is reconfigured,
these factors directly affect subsequent processing
operations and their corresponding processing time.
3) A Knowledge-Guided Deep Reinforcement Learning
(KGDRL) algorithm is developed to address the CPP
scheduling problem. By integrating prior knowledge of
reconfiguration time and machine workload, the proposed
approach effectively narrows the feasible action space,
enhances decision-making efficiency, and ensures the
selection of optimal actions in high-dimensional
environments at each time step. The knowledge-guided
strategy allows the agent to learn a robust and generalizable
scheduling policy across diverse CPP reconfiguration
scheduling scenarios.

The remaining paper is organized as follows. Section II
reviews related articles and summarizes essential research
gaps. Section III describes CMfg framework and the model of
CPP. Section IV designs KGDRL details to solve CPP.
Section V shows the experiments of the proposed method. The
last section concludes this research and points out future work.

Il. RELATED WORKS

A. Flexible and Reconfigurable Manufacturing Systems

The flexible manufacturing system showcased remarkable
capabilities throughout the entire production lifecycle,
including processing, scheduling and logistics [10-12]. Wang
et al. [13] proposed a smart flexible manufacturing system
based on digital-twin and developed the corresponding
applications. Li et al. [14] analyzed the potential of flexible
manufacturing systems and Industry 4.0 for sustainable and
smart manufacturing. However, flexible manufacturing
systems face significant challenges in dynamic operation
scheduling during CPP scheduling due to the limited machine
mobility.

The reconfigurable manufacturing system (RMS) can
rapidly change its hardware, and software components to
adjust its production functionality [15]. Unlike traditional
flexible job shop scheduling problems, reconfigurable job
shop scheduling must explicitly account for machine
reconfiguration time. Zhang et al. [16] introduced a distributed
manufacturing scheduling system for mass customized
production. Hu et al. [17] proposed a collaborative system to
solve the large-scale dynamic scheduling problem. Production

3 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

line reconfiguration is increasingly recognized as an effective
approach to cope with production dynamics and operational
uncertainties in modern manufacturing systems [18-19]. A
reconfigurable job shop consists of multiple reconfigurable
systems or other flexible manufacturing units, forming a
production area that serves as a basic unit for enabling
personalized and customized manufacturing. It emphasizes
coordination across the entire production process and the
optimization of overall system performance.

These research work has provided valuable insights into the
scheduling problems of reconfigurable manufacturing systems,
but most studies do not consider machine reconfiguration time
as a variable, and therefore fail to account for the impact of
reconfiguration during CPP scheduling.

B. Intelligent Production Scheduling

Intelligent scheduling methods have been widely adopted in
manufacturing systems, playing a crucial role in improving
production efficiency, optimizing resource allocation, and
addressing uncertainties in production processes. Chen et al.
[20] proposed an advanced Grey Wolf algorithm for solving
hybrid scheduling problems. Mahmoodi et al. [21] proposed a
data-driven resource allocation method to deal with the smart
manufacturing resources. Khou et al. [22] used a particle
swarm optimization algorithm to improving both economic
efficiency and environmental sustainability in microgrids that
incorporate electric vehicles. Although existing studies have
achieved high-quality FJSP solutions wusing heuristic
algorithms, these methods are highly sensitive to initial
strategies. As a result, their efficiency and solution quality
cannot be reliably guaranteed in dynamic reconfiguration
scenarios.

As research continues to improve the accuracy of modeling
the dynamic characteristics of reconfigurable job shops, the
solution space for their scheduling optimization problems has
grown exponentially [23]. In this context, deep reinforcement
learning (DRL) has emerged as an effective tool for
addressing these challenges, leveraging its strong adaptability,
long-term optimization capabilities, and ability to handle
complex environments. Some scholars have used deep Q-
networks to help agents learn the features of high-dimensional
spaces [24,25], taking advantage of their strong generalization
ability and adaptability to solve high-dimensional scheduling
problems. Lu [26] applied DRL algorithm to studying the
scheduling of cloud manufacturing resources. Zhang [27]
proposed DRL algorithms to tackle the issue of multi-AGV
environments during the scheduling process.

Existing DRL algorithms mainly focus on optimizing
traditional scheduling problems, ignoring reconfigurable
characteristic of CPP scheduling. As a result, the training
results often fail to converge and it becomes difficult to
effectively select the appropriate processing actions in high-
dimension spaces.

Ill. PROBLEM FORMULATION

A. System Framework

This work proposed an edge-cloud based manufacturing
system framework for CPP production. As shown in Fig. 2.
The framework is composed of the following components.

1) CPP CMfg Platform

The CMfg platform can accept the CPP jobs submitted by
distributed individuals or groups. The jobs contain important
CPP parameters. It also provides other related services, such
as production planning, job assignment, data acquisition,
visibility and traceability services. CPP jobs are decomposed
into a lot of operations that can be processed at different
stages of the workshop. The platform also provides visibility
and traceability services for customers to track manufacturing
progress. It can integrate and connect a group of smart
factories but here we only consider the case of one smart
factory (the flow shop).
2) Manufacturing Node

The edge manufacturing node (EMN) is an edge-computing
based manufacturing service node that can accept personalized
production jobs distributed from the CMfg platform, provide
data processing and storage services for the shopfloor things
and manage the production processes in the workshop. EMN
collects the real-time status of the manufacturing things and
makes smart decisions using these data and intelligent
scheduling models and algorithms. Based on the status of
things and jobs, EMN can reconfigure the resources and
schedule the jobs to the resources optimally.
3) Wireless Smart Factory

All the elements in the factory are connected using wireless
communication technologies such as 5G/6G. Without long
electrical cables between machines, the wireless connection
between machines allows free re-arrangement of the
production lines [28] and support the continuously
improvement of resource scheduling [29]. The stages are
settled as the largest set of the processes required by different
CPP jobs. A CPP job may only flow across some of the stages,
thus easily leading to the unbalanced workload in different
stages. Therefore, making smart decisions on the
reconfiguration and scheduling of production resources for
CPP jobs is crucial.

B. Reconfigurable Jobshop Optimization Model

The Reconfigurable CPP Scheduling Problem (RCSP)
involves scheduling a set of CPP jobs on reconfigurable
machines. Suppose there has n CPP jobs J={j|j=12,..n}
and r machines M ={m|m=1,2,..r}. For each job j, it has k
operations O={i|i=12,.k} . The objective function is to
minimize the makespan of the entire scheduling process
rjn1a>§{rj}. Operation scheduling matrix o; is the optimization
variable, denoting the operation results of job j. o is nxr
matrix where the value of matrix element

={é ()

We use X to represent the processing sequence of operations,
and its specific definition is as follows:
: 1 if operation p is next step of job j operation i
Xi.ﬁ={0 p p pof jobj op @)

otherwise
The optimization model, which aims to minimize the
makespan, is presented as follows. Detailed definitions of the
variables are provided in Table I.

J are :
if operation i of job j is to be excuted in machine m
otherwise

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 4

~

Customers -2 o &8
1]
CPPJobs
T
(| Production Planning | | Job decomposition | l
- Service | Service |

\

!
</,,,, | Visibility Service | | |
N CPP CMfg Platform /’ﬁ
\‘ S

Traceability Service /

— \

Subtask Processing

! Operation Ou,... Oy,
! Operation O, .. Oonz)

:_ Operation Ojs,... O |

Manufacturing Progress

> Scheduling

P
Plan

1 Production H -
[| |
| | Scheduling Service : w Data Capture Service |

Storage Service

‘/ -
\/7: Visibility Service

Manufacturing

f Raw-material Loading Area "\ | Finished Products Receiving Area }

| G || EEsEess

o
(™
Wireless Smart Factory

CPP Jobs

(

D D -)

/'j"_>
& 2

Reconfigurable

g
L5 - s

Reconfigurable)

Material Flow

Fig. 2. An edge-cloud and wireless connection based CMfg framework for CPP production

\K Edge Manufacturingwl\lodf/ J/ Progress
~__ . / —
min max{T,} 3)
jel..n
st. OPTY, < J 5}, x MATY, 4)
m=1
Ast, > Y Bl xTt, (5)
m=1
X}, x (Sot,; — Eot; — Z;Z; BiBLTL) 20 (6)
Eot, — Sot, = 3" i} g, x P, (OPTY,)x Sp,,(OPTY,) (7
m=1
T, =Eot, + 3 AL xTt, (3)
m=1
B, % By % (S0t — Eot,) (Sot, — Eot, — 33" Al x L, x R,) 0 ©)
u=1v=1
Bl x(Sot; — Ast,) >0 (10)
< (Eot; — Aet,) <0 (11)
jel.n iel.k mel.r (12)
lel.n pel.kuel.rvel.r (13)

Constraint (4) ensures that each operation is assigned to an
accessible machine. Constraint (5) ensures that each operation
starts only after the raw material transfer time, where index 0
denotes the raw material storage point. Constraint (6) requires
that the previous process and the transfer of semi-finished
products are completed before the next process starts.
Constraint (7) specifies the processing time for each operation.
Constraint (8) denotes that the completion time of each job is
when the product is transferred to the finished product storage
area (index r+1). Constraint (9) ensures that the start time of
the next process is after the end time of the previous process
plus the machine reconfiguration time. Constraints (10) and
(11) ensure that the processing time falls within the machine's
available working window, meaning that the available start
time is no earlier than the actual start time (10), and the
available end time is no later than the actual end time (11).
Notifications (12) and (13) define the range of all constraints.

TABLE L VARIABLE EXPLANATION

variable explanation

OPTY; processing stage type of operation i in job

; operation workload of operation i in job j

Pt processing time of machine m per workload

Rt,, reconfiguration time within machine u to machine v
Tt,, transfer time from machine u to machine v

Tty transfer time from raw material storage to machine m
Tt transfer time from machine m to final product storage
Ast,, available starting time of machine m

Aet, available stop time of machine m

MATY,, set of processable type of machine m

Sp,, processing speed of machine m

Sot; Eot; startand end time of operation i in job j

IV. METHOD

In this section, we present the rationale of our method. We
first formulate Markov Decision Process model in our
learning algorithm. Then, we design a knowledge guidance
method to learn the scheduling policy, followed by the
introduction of training algorithm. Our algorithm proposes an
innovative knowledge-guided deep reinforcement learning
framework, in which reconfiguration time is explicitly
integrated into two key components: the reward function and
the knowledge guidance. By embedding reconfiguration-
related knowledge into these critical stages, the algorithm can
rapidly learn dynamic policies and derive convergent and
robust scheduling solutions for CPP scheduling. The
workflow of the proposed knowledge guided DRL algorithm
is shown in Fig. 3.

The scheduling process is actually a series of consecutive
decisions assigning jobs to the corresponding machines. The
value of g is determined one by one during this process. The

5 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

scheduling process considered here works as follows. At the
beginning, the CPP scheduling instance is initialized into the
state vector S,. Then, the job vector and machine vector are

aggregated together to form the action vector. The knowledge
network and policy network will calculate the action
probabilities, respectively, after applying the masking method.
The system will then sample the action ¢, for this time step

based on the combined probability. Once the decision is made,
the system will continue scheduling if the process is not yet
complete. At each decision step t (time 0 or when an operation
is completed), the agent observes the current system state S,

and makes a decision ¢, . Then, the environment transits to the

next decision step t + 1. The process iterates until all the
operations are scheduled. The corresponding MDP is defined
as follows.

State: The state is used to represent the status of the system
and guide decision-making. The state vector at time t is

denoted as a node vector St:{Nt(i)},ie{J,M} , which

consists of both machine nodes and job nodes. J and M
represent all CPP jobs and machines respectively. To
comprehensively characterize the workshop scenario, each
node vector s composed of six features
Nt(i)=(wbt,at1,nn,,ut[,cot,cst)i,vie{J,M}. In our framework,

the nodes consist of both machines and jobs, and the feature
vector is constructed to incorporate critical attributes from
both types. A well-designed feature should capture historical,
current, and future information. In traditional FISP solutions,
node utilization is used to represent historical information,
while idle time characterizes future information [30]. For
current information, typical descriptors include processing
speed, available resources, operational status, and task
operations [31]. To ensure that the features comprehensively
reflect the production state, all of these aspects are
incorporated into the feature vector. A detailed explanation of
the selected features is provided in Table II.

TABLE II. FEATURE EXPLANATION
Feature name explanation
whb working binary of node
at available time(completion time) of node
nn number of available accessable nodes
ut utility of node
co the current operation number of node
cs current speed of node

Action: This article combines the operation selection and
the machine assignment as a composite decision. An action a,

is defined as a feasible operation-machine pair and None type
action a, ={(oij,Mk)}U{None} at step t, where O, is eligible

and M, is idle and can process O; .The action vector is
concatenated by operation and machine vector,
S, =concat(N,(J),N,(M)) . In RCSPs, sometimes when the

machine chooses a "None" action, enabling it to subsequently
select the action with shorter reconfiguration time, thereby

reducing the makespan. Therefore, when using the actor to
generate a policy, we divide the action vector into available
and unavailable parts by masking method and output the
corresponding probabilities through policy network
respectively.

Transition: The state vector depends on the previous state
and action, determining the transition function. Notably, when
all jobs are still being processed, the state does not change. A
new state is generated at the moment a new operation is
completed after time t, marking this time as t+1. At this point,
S,., Is updated based on the new node vector. The next action,

a.;, I then selected based on S,,,, and this iterative process

continues until all jobs in the manufacturing workshop are
completed.

Reward: Reward function is designed to estimate the action
and optimize the policy. In the state-of-art research on jobshop
scheduling, the reward function is commonly designed as the
difference between the estimated completion times of S, and

S.. - In our study, we have adopted this approach.

Additionally, we have considered the impact of machine
reconfiguration time to guide the agent in learning strategies
that minimize reconfiguration time:

r(S.S.1,a)=T(S,)-T(S,,)—trantime(a,) (14)
where T (S) is current time of state S and trantime is machine

reconfiguration time of available.

Policy: A policy n(a[|S,) defines a probability distribution
over the action set for each state. Our policy network output
avail and nonavail action probability separately based on state
vector at each decision time. To learn effective strategies
faster, we deployed a knowledge-guided structure in
outputting action probability. The knowledge network outputs
a probability distribution of actions, and actions are sampled
based on the knowledge guidance probability. Detailed
structure of knowledge network is discussed in next section.

A. Knowledge Guidance Structure

The Flexible Job-Shop Scheduling Problem is strongly NP-
hard, and the inclusion of machine reconfiguration time
further increases its complexity. To address this large-scale
problem, a knowledge-guided structure is integrated into
algorithm. The efficacy of knowledge-guided structure in
bolstering the efficacy of training results has been empirically
validated [32]. The if-then rule is a prevalent form of general
advice, this approach has been empirically validated to
improve training results and accelerate algorithm training
process [33].

To minimize makespan, a general heuristic is proposed to
speed up training and improve scheduling results. This
heuristic is influenced by the principles of the IF A THEN B
structure and e-greedy strategy. it can be summarized as
follows: IF the available action has a shorter machine
reconfiguration time and a heavier sequential workload,
THEN the guidance probability for selecting this action is
higher. This method balance exploration and exploitation
during learning, preventing the system from settling on locally
optimal solutions. Considering the possibility of zero
reconfiguration time, the general advice probability
distribution of available action is:

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

JSRS : zero value in state/probability vector . non-zero value in avail probability vector
instance : non-zero value in guidance probability vector : non-zero value in nonavail probability vector learned policy
- scheduling results
Action Vector knowledge | Guidance Probablity
Environment network . .
I (wb,at,nn,ut,co,cs) Action Samplin
Initialization JMy piing
IM, IM, Yes, output
State Vector M, NN IM,
(wb,at,nn,ut,co,cs) J.M
3, " I My finish
= < schedule
uiE = ‘ l Actor Probability +10 g action ?
n . .
M, Avail Masking avail nonavail
avail nonavail IM
My IiM; W ag .
J.M ‘]lMZ
112 .
M T J;M, No, continue
113
ey
IM po
Nk network IM B
Environment Transition
update update move to next
jobshop status policy network decision time

Fig. 3. Workflow of proposed knowledge guided DRL method

S, =trantime(a‘)/Htrantime(a‘)H2 (15)
S, =workload (a,)/ Hworkload(a[)H2 (16)
P, = (e /He’sl 1)+o¢2(eSZ /HeSz) a7

where trantime is machine reconfiguration time of available
action and workload is remaining processing time of the
available action. The guidance probability for a non-available
action is represented as a zero vector, so the knowledge

network outputs a single probability vector, as shown in Fig. 3.

In summary, the knowledge network serves as the output
function of p, . Due to the high variance of reconfiguration

and processing time between different jobs, using standard
activation functions like softmax can lead to probability
distributions that are either too concentrated (0-1distribution)
or too scattered (uniform distribution) to be effective.
Therefore, in this case, we adopt the 1-norm activation form to
obtain a more stable probability distribution of p, .

B. Training

KGDRL uses Proximal Policy Optimization (PPO)
structure for training, which deployed an actor-critic structure.
Actor is the policy network z,, and critic v, predicts the

value of state S, . Both actor and critic are designed as MLPs
with two hidden layers, =, is deployed with a L1-norm
activation as mentioned before, the overall training structure is
shown in Fig. 3. As shown in Algorithm 1, the training is
performed in | iterations and g independent instances during
each iteration, we compute the guidance probabilities for each
state and incorporate them into the probabilities outputted by
the policy network, to optimize the agents’ sampling strategy.
The actor probability of avail action is calculated using avail
state vector, and similarly for nonavail action.

Algorithm 1 : KGDRL

Initialize Policy network 7, and Critic network V¢ with trainable
parameters @ and ¢
Initialize S independent instances
For iter =1,2,...1 do:
For b=12,..4 do:
Initialize S, based on instance b
While S, is not terminal do :
Initialize @, , mask vector F, ., and F ..
Fait =L Foonaan =0 1f Oij €
Compute action distribution based on policy network
Pavail =7, (Favai (Oij)S[): Pronavait = %o (Fonavai (Oij)St)

Compute general advice distribution P,y = Py,

based on S,

Sample action a based on P = P,yice T Pavait + Pronavail

Reverie reward I, and next state S,
St <~ Sl+1

Compute GAE A based on r,, S, for each step

Compute PPO loss A based on A

Update network parameters @ and ¢ based on PPO loss A
Return

V. EXPERIMENTS

In the experiments, we evaluate our proposed KGDRL
model on RCSPs. Unlike dynamic scheduling problem with
setup time, the machine reconfiguration time is related to
operation stages, but not job sequence. Therefore, we are
incapable of verifying our algorithm utilizing public datasets,

7 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

compelling us to independently construct RCSP instances for
testing. To ensure the effectiveness of the KGDRL method
across all CPP problems, a robustness test has been conducted.
Finally, we analysis the features of machine reconfiguration,
particularly the effectiveness across different instances.

A. Experiment Setting
1) Instance Construction

In real-world CPP scheduling settings, each job consists of
multiple processing operations, and the workload required for
each operation varies. Additionally, different stages require
different machine components, leading to variations in
machine processing speeds. Furthermore, due to different
reconfiguration methods between components, reconfiguration
times are not uniform across operations on the same machine.
As a result, three key variables randomly vary in real-world
reconfigurable production instances: operation processing
time, machine reconfiguration time, and processing speed.
Based on the scheduling model, the operation processing time

is p;=q;xPt (OPTY;) . According to the Central Limit

Theorem, the distribution of the mean of a random variable
will follow a normal distribution when the data size is large.
Based on this, we use a normal distribution function to
generate three key random parameters. It is important to note
that reconfiguration time is always shorter than operation
processing time, as machines only need to switch their
components during reconfiguration, so the average
reconfiguration time is set to 0.1 times the average processing
time and the average machine processing speed is defined as 1,
as shown in Table I11.

TABLE IIIL. INSTANCE DETAILS
Size(n*m) p; (5) Rt, (s) Sp, (5)
*| % | %
575, 1075, 205, N(1000.1) N(0,0.1) N(L0.1)

5*10, 10*10, 20*10

2) Configuration

We deployed one hidden layer in both the actor and the
critic network. For training, the number of iterations and
instance batch size are set to 1 =1000 and S =10 to achieve
the best scheduling results, min and max replay buffer is 128
and 2048 respectively, allowing the agent to learn an effective
policy in less time. For PPO loss, the clip ratio and
coefficients of entropy is 0.1 and 0.01 respectively to ensure
the convergent scheduling policies. The PPO epochs are set to
15. These hyperparameters are empirically tuned on the 5 x5
instance and fixed on the remaining sizes.
3) Baselines

The learned policies are compared to three widely used
heuristic rules and three well-known DRL algorithms.

Random: Select action randomly.

MWKR: Select action with most work remaining.

FIFO: Select action firstly arrive in jobshop.

DDQN: Double Deep Q Learning [34].

A2C: Advantage Actor Critic [35].

DDPG: Deep Deterministic Policy Gradient [36].

Given that each stage requires identical processing
resources, the reconfiguration time remains constant between

identical stages. Furthermore, the reconfiguration time is zero
when sequentially processing operations within the same stage.

B. Performance

1) Convergence of Algorithms

Based on the generation rules provided in Tab.Ill, we
generated 10 instances for each of the six dimensions to train
our proposed KGDRL algorithm. We then calculated the
average makespan for the 10 instances in each size. The
training process of the KGDRL method is stable and
converged rapidly. As shown in Fig. 4, the training curve for
six different sizes exhibit some fluctuations occur within the
first 200 iterations, followed by swift convergence. With the
help of the knowledge-guided network, the DRL agent can
find an effective search policy during scheduling. The
convergence performance is consistent across all instance sets,
highlighting the necessity of the proposed knowledge-guided
mechanism.

3500
— 5%5
3000 10*5
— 20%5
—~ 2500 510
< 10#10
52000 —— 20%10
c
£ 1500
-
< 1000
o J
5004 T . e

1000 1250 1500 1750 2000

Episodes

0 250 500 750
Fig. 4. Training curve of KGDRL

To demonstrate the potential of KGDRL, we compared
their training results with other baseline methods, as discussed
earlier. Specifically, we evaluated the convergence of all
baseline algorithms by calculating their standard makespan
after 1000 iterations. The standard makespan is computed by
dividing the makespan of each instance by the ratio parameter
(defined as [n/m], where n is the number of jobs and m is the
number of machines). For example, the ratio parameter is 1
for a 5*10 instance. As shown in Fig.5, for converged training
policies, we observe a stable standard makespan across all
instances after 1000 iterations. Specifically, KGDRL and
DDQN exhibit stable policies, with their makespans
consistently close to 400 across all six instance sizes. In
contrast, the standard makespan for most instances trained by
A2C and DDPG exceeds 800 and increases significantly with
dimensionality, indicating poor scalability and convergence.

The high training fluctuations observed in these two
algorithms indicate that their training results are unreliable, as
they continue to search for actions randomly and have not
learned an effective search policy. Consequently, we select the
DDOQN algorithm and other three rules for comparison in
scheduling results due to the unconvincing results provided by
A2C and DDPG.

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 8

2500
KGDRL
DDQN
2000 A2C
- DDPG
g
2 1500
i)
<
=
i
£ 1000
g
2
5001
[—
5%5 10%5 20%5 5%10 10%10 20%10

Instance Size (n*m)

Fig. 5. Standard makespan of baselines after 100 iterations

2) Scheduling Results

For CPP production, a shorter makespan indicates superior
performance. The total makespan is the maximum completion
time among all jobs, we compared the makespan results of all
baselines in six size, as shown in Fig. 6. We can find that as
the number of jobs increases, adding more machines results in
greater improvements in makespan. This finding highlights
the value of reconfiguration. When the number of available
job-machine action pairs increases, dynamic reconfiguration
effectively mitigates workload imbalances, accelerating the
optimization of makespan. In detail, our proposed KGDRL
has achieved better scheduling results compared to the
baselines. By noticing that MKWR rules achieved the best
scheduling results of all heuristic rules in all size instances,
KGDRL significantly outperform MWKR in five instances,
indicating the value of DRL when solving high dimension
scheduling problems like CPP. KGDRL also provides a more
stable training policy compared to other DRL algorithms.
KGDRL performed better in most cases and is more stable
compared to DDQN. Although the DDQN algorithm performs
well in the 20*5 case, it significantly underperforms the

1800
1600 15108
1400
1200
1000
800 688.99

600
42698

Average Makespan(s)

400
200

10%5 2045

KGDRL =DDQN ~MWKR = FIFO =Random

(a) instances with various jobs and fixed 5 machines

MWKR rule on high-dimensional cases, exhibiting a lack of
sufficient robustness.

C. Robustness
1) Training Time

To verify the insight that KGDRL maintains stable
scheduling results compared to DDQN, we conducted a
detailed robustness check. The key robustness indicator for
these algorithms is their training time, which we compared
across all baseline methods, as shown in Fig. 7. KGDRL
demonstrates stable training times across all instance sizes,
while DDQN exhibits substantial fluctuations, with a
discrepancy of up to 6000 seconds across the six instance
sizes. The training time pattern of DDQN is similar to that of
A2C and DDPG, which, as previously analyzed, fail to select
effective actions during training. This suggests that the
training process of DDQN relies heavily on random selection,
resulting in unstable training outcomes.

The advanced mechanism of KGDRL supports stable
training. KGDRL used a non-available action mask
mechanism, which effectively filters out unavailable actions
during scheduling across all instances, thus facilitating
efficient learning.

2) Scalability on Multi-Scale Instances

To further evaluate the robustness of KGDRL, we
considered the variance in reconfiguration time, which is a
critical factor in real-world applications. Given the significant
volatility of machine reconfiguration times in CPP scheduling,
it is essential to verify whether our approach delivers
favorable scheduling performance across various
reconfiguration time scenarios. For robustness check, we
initially trained KGDRL using the training set with 5 different
categories with 5*5 instances, and then deployed the learned
strategy on a validation set, comparing it with our previously
constructed baselines. Detailed information of robustness
instance is shown in Tab.IV. Overall, the proposed KGDRL
method not only achieves the best scheduling outcomes but
also demonstrates excellent robustness, with both the mean
and standard deviation of the makespan on the validation set
significantly lower than all baseline methods.

200
800
—_ 3.52
o 700 o8
2 600
w
2]
~4 500 -
g 411.87
400
ih 333.82
5 300
% 200
100
0
5%10 10*%10 20%10
KGDRL =DDQN ~MWKR = FIFO m®random

(b) instances with fixed 5 jobs and various machmes

Fig. 6. Average Makespan of six sizes

9 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

Fig. 8 presents the average makespan on the validation set.
Among all methods, KGDRL exhibits the most concentrated
distribution, indicating its ability to consistently achieve high-
quality scheduling results under the guidance of the
knowledge network. In contrast, DDQN exhibits a larger
standard deviation and a higher mean makespan, aligning
closely with random rules. This further validates the reliance
on random selection during the DDQN training process. As
the action space expands with increasing instance size, the
action vector gradually becomes sparse, with most actions
having the same, but highest, probabilities. As a result, the
DRL agent cannot select the most suitable action and is forced
to randomly choose one. To address this, KGDRL
implemented an aggregation mechanism for three types of
action probabilities vectors to eliminate the sparsity, enabling

the agent to select the appropriate action at each decision point.

D. Further Analysis

1) Reconfiguration Details

Machine reconfiguration operations play a crucial role in
shaping future scheduling decisions. Through effective
reconfiguration, a dynamically reconfigurable workshop can
efficiently reorganize diverse and customized jobs, and reduce
the overall completion time of the workshop. We presented a
555 instance as an example, the detailed job and machine
parameters for this instance are provided in Tables V and VI.
This example illustrates the dynamic nature of CPP instances,
as evidenced by significant variations in processing times
across operations (up to 100 seconds), processing speed
differences (up to 80% on Machine M1), and reconfiguration
time fluctuations (up to 33% on Machine M5). Due to the
limited reconfigurability of machines, conventional
scheduling methods result in low work efficiency for
machines M3 and M4, as most jobs are assigned to highly
reconfigurable machines. This imbalance significantly
increases the overall scheduling time of the workshop.
However, after implementing reconfiguration operations,
machines M3 and M4 can still complete jobs within their
processing range, as shown in the Gantt chart in Fig. 9,
ensuring overall production efficiency.

To further analyze the impact of reconfiguration on CPP,
we calculated the average makespan and reconfiguration time
for 25 validation instances, as shown in Fig. 10.

—e— KGDRL Pl 2

RO DDQN e

-@- A2C

50001 | <@+ DDPG
o /’/l N
T 4000 L
=
& i
£ 3000
E
=

20001

1000

0

5%5 5%10 10%5 1010 20%5 20%10

Instance Size (n*m)

Fig. 7. Training time of baselines after 100 iterations

It can be observed that KGDRL performs well, even though
the average reconfiguration time is greater than the processing
time. The trained policy strikes a balance between
reconfiguration and processing, thereby maximizing the
operational efficiency of the job shop. When dealing with
instances that have high reconfiguration times, the production
workshop is more likely to experience an unbalanced
workload, as machines need much more reconfiguration time
to process essential jobs. To address this, our knowledge-
guided rules incorporate workload design. By considering
machine workload, the agent can better understand the
processing sequence, thereby reducing the impact of
reconfiguration time. The agent may opt for actions with
longer processing times but shorter reconfiguration times
when the reconfiguration time of target action is extremely
long, allowing KGDRL to achieve the best balance between
processing and reconfiguration, ultimately resulting in better
CPP scheduling policies.

2) Flexibility Analysis

Given that machine flexibility greatly varied in real-world
manufacturing contexts, we analyzed its impact on scheduling
strategies. For reconfigurable machines, the flexibility level of
jobshop is defined as the sum of the processable stages of each
machine divided by the total processing stages.

To ensure the conclusions are representative, we analyze
the scheduling results of the validation dataset with different
machine reconfiguration time. All instances are divided into
three groups: low, medium and high. As shown in Fig. 11,
KGDRL achieves the best results across all flexibility levels,
while DDQN performs worse than both MWKR and FIFO
rules at all levels. The performance gap is particularly larger at
medium and high flexibility levels. These results highlight the
limitations of Deep Q networks when handling large-scale
data. As flexibility increases, the state vector expands rapidly,
and the Q network struggles to effectively capture key features
of high-dimensional tensors, leading to low action selection
efficiency throughout the training process, which degrades
policy performance. In our proposed KGDRL algorithm, the
masking operation and knowledge-guided mechanism are
employed to address this issue. Regardless of the state vector
and action set size, the KGDRL agent can effectively learn a
convergent policy and achieve the best scheduling results.

2500

2000

@

H

21500

2

<

2 T
(5]

& 1000 —I—

o

Z

' T LI 7T 1

KGDRL DDQN MWKR FIFO Random

Fig. 8. Boxplot of average makespan on 5*5 validation instance

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 10

Machine Available Scheduling Details

ID Stage
Jobl

M5 S1S2 % S1:117s 12s $2:122s
Job2
Job3

M4 S3 $3:33s $328s S337s Jobt
Reconfig
Jobs

M3 S1 S1:50s S1:34s

M2 S1S3 S1:70s 9 S3:69 $3:62s

M1 S1S2 % S1:107s 9s §2:25s S2:24s82:19s S2:32s

0 50 100 150 200 250 300

TimeLine(s)

Fig. 9. Reconfiguration example of gantt chart on 5*5 instance

I Makespan
KGDRL 1 ‘

[Reconfiguration

1098.(). 1971.5

DDQN {

|2163.3

MWKR 1

1976.6|

FIFO{

1968.7 |

=0

0 500 1000 1500 2000 2500 3000 3500 4000
Average Makespan(s)

random

Fig. 10. Makespan reconfiguration comparison on 5*5 instances

3500
3000
F 2500
&
£ 2000 1807.3
g
< 1500 1057.5
g
g 1000 6919
4.
500
0
Low Medium High
KGDRL ®DDQN "MWKR ~ FIFO ®Random
Fig. 11. Policy variance on different flexibility instances
VI. CONCLUSIONS AND FUTURE RESEARCH
This paper addresses the resource reconfiguration
scheduling problem for processing services in cloud
manufacturing through cloud-edge collaboration and

knowledge-guided deep reinforcement learning. The main
conclusions are summarized as follows:

1) The ultra-flexible CMfg framework is proposed to
support dynamic machine reconfiguration for varying
processing requirements and to enable smart decision-making
based on intelligent scheduling models and algorithms.

2) We developed a CPP model that incorporates
reconfiguration variables to gain a comprehensive
understanding of reconfiguration time variance and its impact
on scheduling, enabling more effective problem-solving.

3) Prior knowledge about reconfiguration time and machine
workload is embedded in the training network, making the
learning policy of KGDRL more efficient than the baselines. It
remains robust across various instance sizes, indicating
significant potential for solving complex CPP scheduling
problems in cloud manufacturing.

In the future, digital twins can be introduced for real-time
monitoring of CPP scheduling. Uncertainties related to
reconfiguration can be tracked throughout the entire process,
as digital twins can be deployed on both machines and jobs to
accurately diagnose these uncertainties. Once identified, the
digital twin can transmit the cause and type of the issue to the
manufacturing cloud, enabling the system to generate
appropriate solutions and thus ensure safe and efficient
production.

TABLE IV. ROBUSTNESS INSTANCE DETAILS
Category C1 Cc2 C3 C4 C5
Rt, (s) N(1,0.1) N(10,0.1) N(20,0.1) N(100,0.1) N(1000,0.1)
Train
Number / 10 / 10 /
Val
Number 5 5 5 5 5

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

11
TABLE V. JOB PARAMETER OF PROPOSED INSTANCE
Processing Jobs
time(s) Ji J2 J3 J4 J5
01 011:126 021:69 031:107 041:100 051:86
Operation 02 012:121 022:159 032:95 042:126 052:81
03 013111 023:93 033:62 043:60 053:122
TABLE VL MACHINE PARAMETER OF PROPOSED INSTANCE
Machines M1 M2 M3 M4 M5
Available stages S1S2 S1S3 S1 S3 S182
Processing 1002 0710 04 03 1715
speed
Reconfiguration ~ S1-S2:9 S1-S3:9 S1-S2:12
time(s) S2-S1:9 S3-S1:8 S2-S1:9
REFERENCES

(1

[

13

[4]

[5]

(6]

[7]

(8]

9

[10]

(1]

[12]

Yang, Chen, et al. "Towards product customization and personalization
in IoT-enabled cloud manufacturing." Cluster Computing 20 (2017):
1717-1730.

Vlachos I, Pascazzi R M, Ntotis M, et al. Smart and flexible
manufacturing systems using Autonomous Guided Vehicles (AGVs) and
the Internet of Things (IoT)[J]. International Journal of Production
Research, 2024, 62(15): 5574-5595.

Zhou Y, Du S, Liu M, et al. Machine-fixture-pallet resources
constrained flexible job shop scheduling considering loading and
unloading times under pallet automation system[J]. Journal of
Manufacturing Systems, 2024, 73: 143-158.

Javaid M, Haleem A, Singh R P, et al. Enabling flexible manufacturing
system (FMS) through the applications of industry 4.0 technologies[J].
Internet of Things and Cyber-Physical Systems, 2022, 2: 49-62.

Milisavljevic-Syed J, Li J, Xia H. Realisation of responsive and
sustainable reconfigurable manufacturing systems[J]. International
Journal of Production Research, 2024, 62(8): 2725-2746.

Rohaninejad M, Vahedi-Nouri B, Hanzalek Z, et al. An integrated lot-
sizing and scheduling problem in a reconfigurable manufacturing system
under workforce constraints[J]. International Journal of Production
Research, 2024, 62(11): 3994-4013.

Li Y, Li X, Gao L, et al. Multi-agent deep reinforcement learning for
dynamic reconfigurable shop scheduling considering batch processing

and worker cooperation[J]. Robotics and Computer-Integrated
Manufacturing, 2025, 91: 102834.
Pang, Shibao, et al. "Mass personalization-oriented integrated

optimization of production task splitting and scheduling in a multi-stage
flexible assembly shop." Computers & Industrial Engineering 162
(2021): 107736.

Lei, Kun, et al. "Large-scale dynamic scheduling for flexible job-shop
with random arrivals of new jobs by hierarchical reinforcement
learning." IEEE Transactions on Industrial Informatics 20.1 (2023):
1007-1018.

Delorme X, Fleury G, Lacomme P, et al. Modelling and solving
approaches for scheduling problems in reconfigurable manufacturing
systems[J]. International Journal of Production Research, 2024, 62(7):
2683-2704.

Yang, Chen, et al. "Metaverse: Architecture, Technologies, and
Industrial Applications." 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE). IEEE, 2023.

Zhao Z, Zhang M, Chen J, et al. Digital twin-enabled dynamic spatial-

temporal knowledge graph for production logistics resource allocation[J].

Computers & Industrial Engineering, 2022, 171: 108454.

[13]

[14]

[15]

[16]

7]

[18]

[19

[20]

[21

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Wang K J, Lee T L. Designing a digital-twin based dashboard system
for a flexible assembly line[J]. Computers & Industrial Engineering,
2024, 196: 110491.

Li Q, Tang W, Li Z. Leveraging Industry 4.0 for Sustainable
Manufacturing: A Quantitative Analysis Using FI-RST[J]. Applied
Sciences, 2024, 14(20): 9545.

Koren, Yoram, et al. "Reconfigurable manufacturing systems." CIRP
annals 48.2 (1999): 527-540.

Zhang, Lixiang, et al. "Distributed real-time scheduling in cloud
manufacturing by deep reinforcement learning." IEEE Transactions on
Industrial Informatics 18.12 (2022): 8999-9007.

Hu, Y., Zhang, L., Zhang, Z., Li, Z., & Tang, Q. (2024). Flexible
assembly job shop scheduling problem considering reconfigurable
machine: A cooperative co-evolutionary matheuristic algorithm. Applied
Soft Computing, 166, 112148.

Fu B, Bi M, Umeda S, et al. Digital Twin-based Smart Manufacturing:
Dynamic Line Reconfiguration for Disturbance Handling[J]. IEEE
Transactions on Automation Science and Engineering, 2025.

Yelles-Chaouche A R, Gurevsky E, Brahimi N, et al. Minimizing task
reassignments under balancing multi-product reconfigurable
manufacturing lines[J]. Computers & Industrial Engineering, 2022, 173:
108660.

Chen X, Li Y, Wang L, et al. Multi-objective grey wolf optimizer based
on reinforcement learning for distributed hybrid flowshop scheduling
towards mass personalized manufacturing[J]. Expert Systems with
Applications, 2025, 264: 125866.

Mahmoodi E, Fathi M, Tavana M, et al. Data-driven simulation-based
decision support system for resource allocation in industry 4.0 and smart
manufacturing[J]. Journal of Manufacturing Systems, 2024, 72: 287-307.

Khou S A, Olamaei J, Hosseini M H. Strategic scheduling of the electric
vehicle-based microgrids under the enhanced particle swarm
optimization algorithm[J]. Scientific Reports, 2024, 14(1): 30795.

Serrano-Ruiz J C, Mula J, Poler R. Job shop smart manufacturing
scheduling by deep reinforcement learning[J]. Journal of Industrial
Information Integration, 2024, 38: 100582.

Du Y, Li J. A deep reinforcement learning based algorithm for a
distributed precast concrete production scheduling[J]. International
Journal of Production Economics, 2024, 268: 109102.

Yang, S., Wang, J., & Xu, Z. (2024). Learning to schedule dynamic
distributed reconfigurable workshops using expected deep Q-network.
Advanced Engineering Informatics, 59, 102307.

LuJ, Yang J, Li S, et al. A2C-DRL: Dynamic scheduling for stochastic
edge—cloud environments using A2C and deep reinforcement learning[J].
IEEE Internet of Things Journal, 2024, 11(9): 16915-169.

Zhang, F., Li, R., & Gong, W. (2024). Deep reinforcement learning-
based memetic algorithm for energy-aware flexible job shop scheduling
with multi-AGV. Computers & Industrial Engineering, 189, 109917.

Liu, Xiaoyu, et al. "Multi-agent deep reinforcement learning for end—
edge orchestrated resource allocation in industrial wireless networks."
Frontiers of Information Technology & Electronic Engineering 23.1
(2022): 47-60.

Zhou, Junlong, et al. "Dependable scheduling for real-time workflows
on cyber—physical cloud systems." IEEE Transactions on Industrial
Informatics 17.11 (2020): 7820-7829.

Zhou T, Zhu H, Tang D, et al. Reinforcement learning for online
optimization of job-shop scheduling in a smart manufacturing factory[J].
Advances in Mechanical Engineering, 2022, 14(3): 16878132221086120.

Song W, Chen X, Li Q, et al. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning[J]. IEEE Transactions
on Industrial Informatics, 2022, 19(2): 1600-1610.

Liu L, Zhou W, Guan K, et al. Knowledge-guided machine learning can
improve carbon cycle quantification in agroecosystems[J]. Nature
communications, 2024, 15(1): 357.

Kuhlmann, Gregory, et al. "Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer." The AAAI-2004
workshop on supervisory control of learning and adaptive systems. 2004.

Liu R, Piplani R, Toro C. Deep reinforcement learning for dynamic
scheduling of a flexible job shop[J]. International Journal of Production
Research, 2022, 60(13): 4049-4069.

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

12

[35]

[36]

Monaci M, Agasucci V, Grani G. An actor-critic algorithm with policy
gradients to solve the job shop scheduling problem using deep double
recurrent agents[J]. European Journal of Operational Research, 2024,
312(3): 910-926.

Wang J, Zhou H, Guo J, et al. A Q-Learning-based Deep Deterministic
Policy Gradient Algorithm for the Re-entrant Hybrid Flow Shop Joint
Scheduling Problem with Dual-gripper[J]. Engineering Letters, 2025,
33(5).

