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 

Abstract—To meet personalized user demands, 
customized and personalized production has become an 
effective manufacturing paradigm. However, wired 
network connections inhibit flexible production line 
reconfiguration and current DRL methods cannot 
converge and obtain eligible scheduling results for 
customized and personalized production (CPP) due to the 
high-dimensional solution space and the negligence of 
significant machine reconfiguration time. To address this 
challenge, we first propose a wireless manufacturing 
system framework to support ultra-flexible reconfiguration 
and resource scheduling. Next, we build a reconfiguration 
oriented scheduling model to reflect the significant impact 
of reconfiguration time. Then, we design a Knowledge 
Guided Deep Reinforcement Learning (KGDRL) algorithm 
to effectively solve the CPP scheduling problem facing the 
dimension explosion problem. The knowledge guidance 
incorporates reconfiguration time and machine workload 
to significantly reduce the feasible action space, enabling 
the rapid convergence of KGDRL. The experiment results 
show that our approach provides a robust and scalable 
solution and obtains shorter total makespan of whole 
production during scheduling. 

Keywords—customized and personalized production, 
reconfigurable manufacturing system, deep reinforcement 
learning, knowledge guidance, resource scheduling 

I. Introduction

ustomized and personalized products (CPPs), which best 

meet individual needs, have gradually become the main 
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business model for many companies and a key factor in their 

competitiveness [1]. Traditional discrete manufacturing 

systems typically rely on rigid production lines, where each 

machine is assigned to a fixed processing stage and production 

jobs are executed sequentially. However, such systems often 

struggle to meet the growing demand for flexibility in small-

batch, multi-variety production. To address these challenges, 

lean manufacturing workshops increasingly adopt 

reconfiguration scheduling as an effective solution. This 

approach optimizes the use of limited cost and space resources 

by enabling a single production system to flexibly handle a 

wide variety of jobs under changing production conditions. To 

further illustrate how reconfiguration improves production 

efficiency in such settings, we take sand core manufacturing 

in the foundry industry as a representative example, as shown 

in Fig. 1. A typical production process includes three stages: 

material handling, dip coating, and polishing. Since the 

handling operation is relatively short while the dip coating 

process involves longer waiting times, machine idleness and 

task queuing often occur at the coating stage. Without 

reconfiguration, some machines (e.g., M2 and M5) would 

remain idle while multiple jobs are waiting to be processed. 

By enabling reconfiguration, idle machines from the handling 

and polishing stages can be reassigned to the coating stage, 

effectively reducing machine idleness and improving 

processing efficiency. 

Fig. 1. Reconfiguration decision in sand core CPP production 

However, reconfigurable production introduces new 

challenges. Machines must be able to transition smoothly 

between different types of operations to meet the diverse 

requirements of various job types. Before performing a 

specific operation, each machine must undergo a 

reconfiguration process, which typically involves tool 
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switching, material preparation, and parameter adjustments. 

These steps incur a non-negligible reconfiguration time, which 

is often overlooked in existing models. Moreover, 

reconfiguration time is highly dynamic and stage-dependent. 

For example, reconfiguration from handling to dip coating is 

relatively fast due to shared tools and materials, while 

transitioning from coating to polishing takes significantly 

longer. Even within the same coating stage, variations in 

product color resulting from multi-variety production can lead 

to considerable differences in reconfiguration time.  This 

variability in reconfiguration time introduces heterogeneity 

and uncertainty into the scheduling environment, posing 

considerable challenges for the deployment of efficient 

learning-based scheduling algorithms. Therefore, an effective 

production scheduling strategy is essential to account for the 

impact of reconfiguration and ensure the overall efficiency of 

the CPP production process. 

Cloud Manufacturing systems (CMfg) have long been 

considered a practical framework to traditional production 

models due to their features such as low-latency connectivity, 

full-shop collaboration, and real-time data sharing. However, 

current CMfg cannot efficiently handle a group of CPP jobs 

submitted by individual customers due to the following 

reasons: 1) Wired network connections in existing 

manufacturing systems limit machine mobility and hinder 

flexible reconfiguration of production lines. State-of-the-art 

wired manufacturing networks primarily focus on flexibility 

design to enhance manufacturing efficiency [2-4]. Despite 

these advancements, such systems remain unable to support 

CPP scheduling due to limitations in machine mobility. 

Without sufficient space and function flexibility, idle 

machines could not be dynamically reconfigured to busy 

stages to accelerate the processing. 2) Existing scheduling 

models neglect the variety of reconfiguration time during 

the scheduling process. These models are established to 

address challenges such as reducing energy costs [5] and 

managing workforce constraints [6]. Reconfiguration time can 

vary significantly across different machines, potentially 

leading to long processing time and, as a result, lower 

production efficiency in the workshop. 3) Current 

scheduling methods fail to obtain convergent solutions 

under the dynamic nature and dimensional complexity of 

the CPP problem. While machine learning algorithms and 

heuristic approaches can produce near-optimal results for most 

traditional flexible job-shop scheduling problems, they often 

struggle in more complex scenarios. These methods primarily 

address heterogeneous job types, such as batch processing [7], 

job splitting [8], and random job arrivals [9]. However, they 

largely overlook the reconfiguration status of machines, which 

is critical for effective CPP scheduling. This oversight, 

combined with the explosion of computational dimensions 

introduced by machine reconfigurability, makes it challenging 

to develop robust and efficient scheduling strategies. 

As a result, this study aims to propose an intelligent 

reconfigurable resource scheduling method for ultra-flexible 

wireless CPP workshops in discrete manufacturing with multi-

variety, small-batch production. The main contributions of this 

paper are summarized as follows: 

1) An edge-computing based ultra-flexible CMfg 

framework is proposed to support smart adaptive 

reconfiguration and resource scheduling, according to CPP 

job requirements. Idle machines can adjust their scheduling 

status and move to busy production lines and process the 

corresponding CPP jobs with the support of wireless 

connections, enabling them to meet the diverse demands of 

CPP jobs. 

2) A reconfiguration-oriented scheduling model is 

established to quantify the impact of reconfiguration time 

on the scheduling process. The model incorporates CPP 

jobs, reconfigurable production machines, different 

processing speed, varying reconfiguration time, and 

optimization objectives to reflect how reconfiguration 

influences production. Once a machine is reconfigured, 

these factors directly affect subsequent processing 

operations and their corresponding processing time.  

3) A Knowledge-Guided Deep Reinforcement Learning 

(KGDRL) algorithm is developed to address the CPP 

scheduling problem. By integrating prior knowledge of 

reconfiguration time and machine workload, the proposed 

approach effectively narrows the feasible action space, 

enhances decision-making efficiency, and ensures the 

selection of optimal actions in high-dimensional 

environments at each time step. The knowledge-guided 

strategy allows the agent to learn a robust and generalizable 

scheduling policy across diverse CPP reconfiguration 

scheduling scenarios.   

The remaining paper is organized as follows. Section II 

reviews related articles and summarizes essential research 

gaps. Section III describes CMfg framework and the model of 

CPP. Section IV designs KGDRL details to solve CPP. 

Section V shows the experiments of the proposed method. The 

last section concludes this research and points out future work. 

II. RELATED WORKS 

A. Flexible and Reconfigurable Manufacturing Systems 

The flexible manufacturing system showcased remarkable 

capabilities throughout the entire production lifecycle, 

including processing, scheduling and logistics [10-12]. Wang 

et al. [13] proposed a smart flexible manufacturing system 

based on digital-twin and developed the corresponding 

applications. Li et al. [14] analyzed the potential of flexible 

manufacturing systems and Industry 4.0 for sustainable and 

smart manufacturing. However, flexible manufacturing 

systems face significant challenges in dynamic operation 

scheduling during CPP scheduling due to the limited machine 

mobility.  

The reconfigurable manufacturing system (RMS) can 

rapidly change its hardware, and software components to 

adjust its production functionality [15]. Unlike traditional 

flexible job shop scheduling problems, reconfigurable job 

shop scheduling must explicitly account for machine 

reconfiguration time. Zhang et al. [16] introduced a distributed 

manufacturing scheduling system for mass customized 

production. Hu et al. [17] proposed a collaborative system to 

solve the large-scale dynamic scheduling problem. Production 
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line reconfiguration is increasingly recognized as an effective 

approach to cope with production dynamics and operational 

uncertainties in modern manufacturing systems [18-19]. A 

reconfigurable job shop consists of multiple reconfigurable 

systems or other flexible manufacturing units, forming a 

production area that serves as a basic unit for enabling 

personalized and customized manufacturing. It emphasizes 

coordination across the entire production process and the 

optimization of overall system performance.  

These research work has provided valuable insights into the 

scheduling problems of reconfigurable manufacturing systems, 

but most studies do not consider machine reconfiguration time 

as a variable, and therefore fail to account for the impact of 

reconfiguration during CPP scheduling. 

B. Intelligent Production Scheduling 

Intelligent scheduling methods have been widely adopted in 

manufacturing systems, playing a crucial role in improving 

production efficiency, optimizing resource allocation, and 

addressing uncertainties in production processes. Chen et al. 

[20] proposed an advanced Grey Wolf algorithm for solving 

hybrid scheduling problems. Mahmoodi et al. [21] proposed a 

data-driven resource allocation method to deal with the smart 

manufacturing resources. Khou et al. [22] used a particle 

swarm optimization algorithm to improving both economic 

efficiency and environmental sustainability in microgrids that 

incorporate electric vehicles. Although existing studies have 

achieved high-quality FJSP solutions using heuristic 

algorithms, these methods are highly sensitive to initial 

strategies. As a result, their efficiency and solution quality 

cannot be reliably guaranteed in dynamic reconfiguration 

scenarios.  

As research continues to improve the accuracy of modeling 

the dynamic characteristics of reconfigurable job shops, the 

solution space for their scheduling optimization problems has 

grown exponentially [23]. In this context, deep reinforcement 

learning (DRL) has emerged as an effective tool for 

addressing these challenges, leveraging its strong adaptability, 

long-term optimization capabilities, and ability to handle 

complex environments. Some scholars have used deep Q-

networks to help agents learn the features of high-dimensional 

spaces [24,25], taking advantage of their strong generalization 

ability and adaptability to solve high-dimensional scheduling 

problems. Lu [26] applied DRL algorithm to studying the 

scheduling of cloud manufacturing resources. Zhang [27] 

proposed DRL algorithms to tackle the issue of multi-AGV 

environments during the scheduling process.  

Existing DRL algorithms mainly focus on optimizing 

traditional scheduling problems, ignoring reconfigurable 

characteristic of CPP scheduling. As a result, the training 

results often fail to converge and it becomes difficult to 

effectively select the appropriate processing actions in high-

dimension spaces. 

III. PROBLEM FORMULATION 

A. System Framework 

This work proposed an edge-cloud based manufacturing 

system framework for CPP production. As shown in Fig. 2. 

The framework is composed of the following components. 

1) CPP CMfg Platform 

The CMfg platform can accept the CPP jobs submitted by 

distributed individuals or groups. The jobs contain important 

CPP parameters. It also provides other related services, such 

as production planning, job assignment, data acquisition, 

visibility and traceability services. CPP jobs are decomposed 

into a lot of operations that can be processed at different 

stages of the workshop. The platform also provides visibility 

and traceability services for customers to track manufacturing 

progress. It can integrate and connect a group of smart 

factories but here we only consider the case of one smart 

factory (the flow shop). 
2) Manufacturing Node 

The edge manufacturing node (EMN) is an edge-computing 

based manufacturing service node that can accept personalized  

production jobs distributed from the CMfg platform, provide 

data processing and storage services for the shopfloor things 

and manage the production processes in the workshop. EMN 

collects the real-time status of the manufacturing things and 

makes smart decisions using these data and intelligent 

scheduling models and algorithms. Based on the status of 

things and jobs, EMN can reconfigure the resources and 

schedule the jobs to the resources optimally. 
3) Wireless Smart Factory 

All the elements in the factory are connected using wireless 

communication technologies such as 5G/6G. Without long 

electrical cables between machines, the wireless connection 

between machines allows free re-arrangement of the 

production lines [28] and support the continuously 

improvement of resource scheduling [29]. The stages are 

settled as the largest set of the processes required by different 

CPP jobs. A CPP job may only flow across some of the stages, 

thus easily leading to the unbalanced workload in different 

stages. Therefore, making smart decisions on the 

reconfiguration and scheduling of production resources for 

CPP jobs is crucial. 

B. Reconfigurable Jobshop Optimization Model 

 The Reconfigurable CPP Scheduling Problem (RCSP) 

involves scheduling a set of CPP jobs on reconfigurable 

machines. Suppose there has n CPP jobs  | 1,2,...J j j n   

and r machines  | 1,2,...M m m r  . For each job j , it has k 

operations  | 1,2,...O i i k  . The objective function is to 

minimize the makespan of the entire scheduling process 

1...
max{ }j
j n

T


. Operation scheduling matrix 
j  is the optimization 

variable, denoting the operation results of job j.
j  is n r  

matrix where the value of matrix element j

ir  are : 

 
1 if operation  of job  is to be excuted in machine 

0 otherwise

j

im

i j m



 


 (1) 

We use X to represent the processing sequence of operations, 

and its specific definition is as follows: 

 
1 if operation  is next step of job  operation 

0 otherwise

j

ip

p j i
X


 


 (2) 

The optimization model, which aims to minimize the 

makespan, is presented as follows. Detailed definitions of the 

variables are provided in Table I. 
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Fig. 2. An edge-cloud and wireless connection based CMfg framework for CPP production 
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      ( ) 0j

im ij mSot Ast      (10) 

      ( ) 0j

im ij mEot Aet      (11) 

       1... ,  1... ,  1...j n i k m r     (12) 

       1... ,  1... , 1... , 1...l n p k u r v r     (13) 

 

Constraint (4) ensures that each operation is assigned to an 

accessible machine. Constraint (5) ensures that each operation 

starts only after the raw material transfer time, where index 0 

denotes the raw material storage point. Constraint (6) requires 

that the previous process and the transfer of semi-finished 

products are completed before the next process starts. 

Constraint (7) specifies the processing time for each operation. 

Constraint (8) denotes that the completion time of each job is 

when the product is transferred to the finished product storage 

area (index r+1). Constraint (9) ensures that the start time of 

the next process is after the end time of the previous process 

plus the machine reconfiguration time. Constraints (10) and 

(11) ensure that the processing time falls within the machine's 

available working window, meaning that the available start 

time is no earlier than the actual start time (10), and the 

available end time is no later than the actual end time (11). 

Notifications (12) and (13) define the range of all constraints. 

 

 
TABLE I.  VARIABLE EXPLANATION 

variable explanation 

ijOPTY  processing stage type of operation i in job j 

ijq  operation workload of operation i in job j 

mPt  processing time of machine m per workload 

uvRt  reconfiguration time within machine u to machine v 

uvTt  transfer time from machine u to machine v 

0mTt  transfer time from raw material storage to machine m 

 1m rTt 
 transfer time from machine m to final product storage 

mAst  available starting time of machine m 

mAet  available stop time of machine m 

mMATY  set of processable type of machine m 

mSp  processing speed of machine m 

ijSot ijEot  start and end time of operation i in job j 

IV. METHOD 

In this section, we present the rationale of our method. We 

first formulate Markov Decision Process model in our 

learning algorithm. Then, we design a knowledge guidance 

method to learn the scheduling policy, followed by the 

introduction of training algorithm. Our algorithm proposes an 

innovative knowledge-guided deep reinforcement learning 

framework, in which reconfiguration time is explicitly 

integrated into two key components: the reward function and 

the knowledge guidance. By embedding reconfiguration-

related knowledge into these critical stages, the algorithm can 

rapidly learn dynamic policies and derive convergent and 

robust scheduling solutions for CPP scheduling. The 

workflow of the proposed knowledge guided DRL algorithm 

is shown in Fig. 3. 

The scheduling process is actually a series of consecutive 

decisions assigning jobs to the corresponding machines. The 

value of i

jr  is determined one by one during this process. The 
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scheduling process considered here works as follows. At the 

beginning, the CPP scheduling instance is initialized into the 

state vector 
0S . Then, the job vector and machine vector are 

aggregated together to form the action vector. The knowledge 

network and policy network will calculate the action 

probabilities, respectively, after applying the masking method. 

The system will then sample the action 
0 for this time step 

based on the combined probability. Once the decision is made, 

the system will continue scheduling if the process is not yet 

complete. At each decision step t (time 0 or when an operation 

is completed), the agent observes the current system state 
tS  

and makes a decision  t
. Then, the environment transits to the 

next decision step t + 1. The process iterates until all the 

operations are scheduled. The corresponding MDP is defined 

as follows. 

State: The state is used to represent the status of the system 

and guide decision-making. The state vector at time 𝑡 is 

denoted as a node vector     , , t tS N i i J M , which 

consists of both machine nodes and job nodes. J and M 

represent all CPP jobs and machines respectively. To 

comprehensively characterize the workshop scenario, each 

node vector is composed of six features 

     , , , , , , ,  t t t t t t t i
N i wb at nn ut co cs i J M . In our framework, 

the nodes consist of both machines and jobs, and the feature 

vector is constructed to incorporate critical attributes from 

both types. A well-designed feature should capture historical, 

current, and future information. In traditional FJSP solutions, 

node utilization is used to represent historical information, 

while idle time characterizes future information [30]. For 

current information, typical descriptors include processing 

speed, available resources, operational status, and task 

operations [31]. To ensure that the features comprehensively 

reflect the production state, all of these aspects are 

incorporated into the feature vector. A detailed explanation of 

the selected features is provided in Table Ⅱ. 

 
TABLE II.  FEATURE EXPLANATION 

Feature name explanation 

wb working binary of node 

at available time(completion time) of node 

nn number of available accessable nodes 

ut utility of node  

co the current operation number of node 

cs current speed of node 

 

Action: This article combines the operation selection and 

the machine assignment as a composite decision. An action 
ta  

is defined as a feasible operation-machine pair and None type 

action     ,t ij ka o M None at step t, where 
ijO  is eligible 

and 
kM  is idle and can process 

ijO .The action vector is 

concatenated by operation and machine vector, 

    ' ,t t tS concat N J N M . In RCSPs, sometimes when the 

machine chooses a "None" action, enabling it to subsequently 

select the action with shorter reconfiguration time, thereby 

reducing the makespan. Therefore, when using the actor to 

generate a policy, we divide the action vector into available 

and unavailable parts by masking method and output the 

corresponding probabilities through policy network 

respectively.  

Transition: The state vector depends on the previous state 

and action, determining the transition function. Notably, when 

all jobs are still being processed, the state does not change. A 

new state is generated at the moment a new operation is 

completed after time t, marking this time as t+1. At this point,  

1tS 
is updated based on the new node vector. The next action, 

1ta 
, is then selected based on 

1tS 
, and this iterative process 

continues until all jobs in the manufacturing workshop are 

completed. 

Reward: Reward function is designed to estimate the action 

and optimize the policy. In the state-of-art research on jobshop 

scheduling, the reward function is commonly designed as the 

difference between the estimated completion times of 
tS  and 

1tS . In our study, we have adopted this approach. 

Additionally, we have considered the impact of machine 

reconfiguration time to guide the agent in learning strategies 

that minimize reconfiguration time: 

        1 1, ,t t t t t tr S S a T S T S trantime a     (14) 

where  T S is current time of state S and trantime is machine 

reconfiguration time of available. 

Policy: A policy  | t ta S  defines a probability distribution 

over the action set for each state. Our policy network output 

avail and nonavail action probability separately based on state 

vector at each decision time. To learn effective strategies 

faster, we deployed a knowledge-guided structure in 

outputting action probability. The knowledge network outputs 

a probability distribution of actions, and actions are sampled 

based on the knowledge guidance probability. Detailed 

structure of knowledge network is discussed in next section. 

A. Knowledge Guidance Structure 

The Flexible Job-Shop Scheduling Problem is strongly NP-

hard, and the inclusion of machine reconfiguration time 

further increases its complexity. To address this large-scale 

problem, a knowledge-guided structure is integrated into 

algorithm. The efficacy of knowledge-guided structure in 

bolstering the efficacy of training results has been empirically 

validated [32]. The if-then rule is a prevalent form of general 

advice, this approach has been empirically validated to 

improve training results and accelerate algorithm training 

process [33].  

To minimize makespan, a general heuristic is proposed to 

speed up training and improve scheduling results. This 

heuristic is influenced by the principles of the IF A THEN B 

structure and e-greedy strategy. it can be summarized as 

follows: IF the available action has a shorter machine 

reconfiguration time and a heavier sequential workload, 

THEN the guidance probability for selecting this action is 

higher. This method balance exploration and exploitation 

during learning, preventing the system from settling on locally 

optimal solutions. Considering the possibility of zero 

reconfiguration time, the general advice probability 

distribution of available action is: 
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Fig. 3. Workflow of proposed knowledge guided DRL method

   1
2

/t tS trantime a trantime a (15) 

   2
2

/t tS workload a workload a (16) 

1 1 2 2

1 2
1 1

( / ) ( / )
t

S S S S

ap e e e e     (17) 

where trantime is machine reconfiguration time of available 

action and workload is remaining processing time of the 

available action. The guidance probability for a non-available 

action is represented as a zero vector, so the knowledge 

network outputs a single probability vector, as shown in Fig. 3. 

In summary, the knowledge network serves as the output 

function of 
tap . Due to the high variance of reconfiguration 

and processing time between different jobs, using standard 

activation functions like softmax can lead to probability 

distributions that are either too concentrated (0-1distribution) 

or too scattered (uniform distribution) to be effective. 

Therefore, in this case, we adopt the 1-norm activation form to 

obtain a more stable probability distribution of 
tap .  

B. Training

KGDRL uses Proximal Policy Optimization (PPO)

structure for training, which deployed an actor-critic structure. 

Actor is the policy network  , and critic v  predicts the 

value of state 
tS . Both actor and critic are designed as MLPs 

with two hidden layers,  is deployed with a L1-norm 

activation as mentioned before, the overall training structure is 

shown in Fig. 3. As shown in Algorithm 1, the training is 

performed in I  iterations and   independent instances during 

each iteration, we compute the guidance probabilities for each 

state and incorporate them into the probabilities outputted by 

the policy network, to optimize the agents’ sampling strategy. 

The actor probability of avail action is calculated using avail 

state vector, and similarly for nonavail action. 

Algorithm 1 : KGDRL 

Initialize Policy network 
 and Critic network V with trainable

parameters   and   

Initialize   independent instances 

For 1,2,...iter I  do : 

For 1,2,...b   do : 

Initialize 
tS  based on instance b

While 
tS is not terminal do : 

Initialize 
ta , mask vector

availF  and 
nonavailF  based on 

tS

1, 0 if Oavail nonavail ij tF F a  

Compute action distribution based on policy network 

     ,avail avail ij t nonavail nonavail ij tp F O S p F O S   

Compute general advice distribution 
tadvice ap p

Sample action a  based on 
advice avail nonavailp p p p  

Reverie reward 
tr  and next state 

1tS 

1t tS S 

  Compute GAE 
tA based on 

tr ,
1tS 

for each step

 Compute PPO loss   based on 
tA

Update network parameters   and  based on PPO loss 

Return 

V. EXPERIMENTS

In the experiments, we evaluate our proposed KGDRL 

model on RCSPs. Unlike dynamic scheduling problem with 

setup time, the machine reconfiguration time is related to 

operation stages, but not job sequence. Therefore, we are 

incapable of verifying our algorithm utilizing public datasets, 
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compelling us to independently construct RCSP instances for 

testing. To ensure the effectiveness of the KGDRL method 

across all CPP problems, a robustness test has been conducted. 

Finally, we analysis the features of machine reconfiguration, 

particularly the effectiveness across different instances. 

A. Experiment Setting 

1) Instance Construction 

In real-world CPP scheduling settings, each job consists of 

multiple processing operations, and the workload required for 

each operation varies. Additionally, different stages require 

different machine components, leading to variations in 

machine processing speeds. Furthermore, due to different 

reconfiguration methods between components, reconfiguration 

times are not uniform across operations on the same machine. 

As a result, three key variables randomly vary in real-world 

reconfigurable production instances: operation processing 

time, machine reconfiguration time, and processing speed. 

Based on the scheduling model, the operation processing time 

is  ij ij r ijp q Pt OPTY  . According to the Central Limit 

Theorem, the distribution of the mean of a random variable 

will follow a normal distribution when the data size is large. 

Based on this, we use a normal distribution function to 

generate three key random parameters. It is important to note 

that reconfiguration time is always shorter than operation 

processing time, as machines only need to switch their 

components during reconfiguration, so the average 

reconfiguration time is set to 0.1 times the average processing 

time and the average machine processing speed is defined as 1, 

as shown in Table III. 

 
TABLE III.  INSTANCE DETAILS 

Size(n*m) ijp (s) 
rRt (s) 

rSp (s) 

5*5, 10*5, 20*5, 

5*10, 10*10, 20*10 
N(100,0.1) N(10,0.1) N(1,0.1) 

 
2) Configuration 

 We deployed one hidden layer in both the actor and the 

critic network. For training, the number of iterations and 

instance batch size are set to 1000I   and 10   to achieve 

the best scheduling results, min and max replay buffer is 128 

and 2048 respectively, allowing the agent to learn an effective 

policy in less time. For PPO loss, the clip ratio and 

coefficients of entropy is 0.1 and 0.01 respectively to ensure 

the convergent scheduling policies. The PPO epochs are set to 

15. These hyperparameters are empirically tuned on the 5 × 5 

instance and fixed on the remaining sizes. 
3) Baselines 

The learned policies are compared to three widely used 

heuristic rules and three well-known DRL algorithms.  

Random: Select action randomly.  

MWKR: Select action with most work remaining.  

FIFO: Select action firstly arrive in jobshop.  

DDQN: Double Deep Q Learning [34].  

A2C: Advantage Actor Critic [35].  

DDPG: Deep Deterministic Policy Gradient [36]. 

Given that each stage requires identical processing 

resources, the reconfiguration time remains constant between 

identical stages. Furthermore, the reconfiguration time is zero 

when sequentially processing operations within the same stage. 

B. Performance 

1) Convergence of Algorithms 

Based on the generation rules provided in Tab.Ⅲ, we 

generated 10 instances for each of the six dimensions to train 

our proposed KGDRL algorithm. We then calculated the 

average makespan for the 10 instances in each size. The 

training process of the KGDRL method is stable and 

converged rapidly. As shown in Fig. 4, the training curve for 

six different sizes exhibit some fluctuations occur within the 

first 200 iterations, followed by swift convergence. With the 

help of the knowledge-guided network, the DRL agent can 

find an effective search policy during scheduling. The 

convergence performance is consistent across all instance sets, 

highlighting the necessity of the proposed knowledge-guided 

mechanism. 

 

 
Fig. 4. Training curve of KGDRL 

 

To demonstrate the potential of KGDRL, we compared 

their training results with other baseline methods, as discussed 

earlier. Specifically, we evaluated the convergence of all 

baseline algorithms by calculating their standard makespan 

after 1000 iterations. The standard makespan is computed by 

dividing the makespan of each instance by the ratio parameter 

(defined as [n/m], where n is the number of jobs and m is the 

number of machines). For example, the ratio parameter is 1 

for a 5*10 instance. As shown in Fig.5, for converged training 

policies, we observe a stable standard makespan across all 

instances after 1000 iterations. Specifically, KGDRL and 

DDQN exhibit stable policies, with their makespans 

consistently close to 400 across all six instance sizes. In 

contrast, the standard makespan for most instances trained by 

A2C and DDPG exceeds 800 and increases significantly with 

dimensionality, indicating poor scalability and convergence. 

The high training fluctuations observed in these two 

algorithms indicate that their training results are unreliable, as 

they continue to search for actions randomly and have not 

learned an effective search policy. Consequently, we select the 

DDQN algorithm and other three rules for comparison in 

scheduling results due to the unconvincing results provided by 

A2C and DDPG. 
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Fig. 5. Standard makespan of baselines after 100 iterations 

2) Scheduling Results

For CPP production, a shorter makespan indicates superior

performance. The total makespan is the maximum completion 

time among all jobs, we compared the makespan results of all 

baselines in six size, as shown in Fig. 6. We can find that as 

the number of jobs increases, adding more machines results in 

greater improvements in makespan. This finding highlights 

the value of reconfiguration. When the number of available 

job-machine action pairs increases, dynamic reconfiguration 

effectively mitigates workload imbalances, accelerating the 

optimization of makespan. In detail, our proposed KGDRL 

has achieved better scheduling results compared to the 

baselines. By noticing that MKWR rules achieved the best 

scheduling results of all heuristic rules in all size instances, 

KGDRL significantly outperform MWKR in five instances, 

indicating the value of DRL when solving high dimension 

scheduling problems like CPP. KGDRL also provides a more 

stable training policy compared to other DRL algorithms. 

KGDRL performed better in most cases and is more stable 

compared to DDQN. Although the DDQN algorithm performs 

well in the 20*5 case, it significantly underperforms the 

MWKR rule on high-dimensional cases, exhibiting a lack of 

sufficient robustness. 

C. Robustness

1) Training Time

To verify the insight that KGDRL maintains stable

scheduling results compared to DDQN, we conducted a 

detailed robustness check. The key robustness indicator for 

these algorithms is their training time, which we compared 

across all baseline methods, as shown in Fig. 7. KGDRL 

demonstrates stable training times across all instance sizes, 

while DDQN exhibits substantial fluctuations, with a 

discrepancy of up to 6000 seconds across the six instance 

sizes. The training time pattern of DDQN is similar to that of 

A2C and DDPG, which, as previously analyzed, fail to select 

effective actions during training. This suggests that the 

training process of DDQN relies heavily on random selection, 

resulting in unstable training outcomes.  

The advanced mechanism of KGDRL supports stable 

training. KGDRL used a non-available action mask 

mechanism, which effectively filters out unavailable actions 

during scheduling across all instances, thus facilitating 

efficient learning. 
2) Scalability on Multi-Scale Instances

To further evaluate the robustness of KGDRL, we

considered the variance in reconfiguration time, which is a 

critical factor in real-world applications. Given the significant 

volatility of machine reconfiguration times in CPP scheduling, 

it is essential to verify whether our approach delivers 

favorable scheduling performance across various 

reconfiguration time scenarios. For robustness check, we 

initially trained KGDRL using the training set with 5 different 

categories with 5*5 instances, and then deployed the learned 

strategy on a validation set, comparing it with our previously 

constructed baselines. Detailed information of robustness 

instance is shown in Tab.Ⅳ. Overall, the proposed KGDRL 

method not only achieves the best scheduling outcomes but 

also demonstrates excellent robustness, with both the mean 

and standard deviation of the makespan on the validation set 

significantly lower than all baseline methods. 

Fig. 6. Average Makespan of six sizes 
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Fig. 8 presents the average makespan on the validation set. 

Among all methods, KGDRL exhibits the most concentrated 

distribution, indicating its ability to consistently achieve high-

quality scheduling results under the guidance of the 

knowledge network. In contrast, DDQN exhibits a larger 

standard deviation and a higher mean makespan, aligning 

closely with random rules. This further validates the reliance 

on random selection during the DDQN training process. As 

the action space expands with increasing instance size, the 

action vector gradually becomes sparse, with most actions 

having the same, but highest, probabilities. As a result, the 

DRL agent cannot select the most suitable action and is forced 

to randomly choose one. To address this, KGDRL 

implemented an aggregation mechanism for three types of 

action probabilities vectors to eliminate the sparsity, enabling 

the agent to select the appropriate action at each decision point. 

D. Further Analysis 

1) Reconfiguration Details 

Machine reconfiguration operations play a crucial role in 

shaping future scheduling decisions. Through effective 

reconfiguration, a dynamically reconfigurable workshop can 

efficiently reorganize diverse and customized jobs, and reduce 

the overall completion time of the workshop. We presented a 

5×5 instance as an example, the detailed job and machine 

parameters for this instance are provided in Tables V and VI. 

This example illustrates the dynamic nature of CPP instances, 

as evidenced by significant variations in processing times 

across operations (up to 100 seconds), processing speed 

differences (up to 80% on Machine M1), and reconfiguration 

time fluctuations (up to 33% on Machine M5). Due to the 

limited reconfigurability of machines, conventional 

scheduling methods result in low work efficiency for 

machines M3 and M4, as most jobs are assigned to highly 

reconfigurable machines. This imbalance significantly 

increases the overall scheduling time of the workshop. 

However, after implementing reconfiguration operations, 

machines M3 and M4 can still complete jobs within their 

processing range, as shown in the Gantt chart in Fig. 9, 

ensuring overall production efficiency.  

To further analyze the impact of reconfiguration on CPP, 

we calculated the average makespan and reconfiguration time 

for 25 validation instances, as shown in Fig. 10. 

 
Fig. 7. Training time of baselines after 100 iterations 

It can be observed that KGDRL performs well, even though 

the average reconfiguration time is greater than the processing 

time. The trained policy strikes a balance between 

reconfiguration and processing, thereby maximizing the 

operational efficiency of the job shop. When dealing with 

instances that have high reconfiguration times, the production 

workshop is more likely to experience an unbalanced 

workload, as machines need much more reconfiguration time 

to process essential jobs. To address this, our knowledge-

guided rules incorporate workload design. By considering 

machine workload, the agent can better understand the 

processing sequence, thereby reducing the impact of 

reconfiguration time. The agent may opt for actions with 

longer processing times but shorter reconfiguration times 

when the reconfiguration time of target action is extremely 

long, allowing KGDRL to achieve the best balance between 

processing and reconfiguration, ultimately resulting in better 

CPP scheduling policies. 
2) Flexibility Analysis 

Given that machine flexibility greatly varied in real-world 

manufacturing contexts, we analyzed its impact on scheduling 

strategies. For reconfigurable machines, the flexibility level of 

jobshop is defined as the sum of the processable stages of each 

machine divided by the total processing stages.   

To ensure the conclusions are representative, we analyze 

the scheduling results of the validation dataset with different 

machine reconfiguration time. All instances are divided into 

three groups: low, medium and high. As shown in Fig. 11, 

KGDRL achieves the best results across all flexibility levels, 

while DDQN performs worse than both MWKR and FIFO 

rules at all levels. The performance gap is particularly larger at 

medium and high flexibility levels. These results highlight the 

limitations of Deep Q networks when handling large-scale 

data. As flexibility increases, the state vector expands rapidly, 

and the Q network struggles to effectively capture key features 

of high-dimensional tensors, leading to low action selection 

efficiency throughout the training process, which degrades 

policy performance. In our proposed KGDRL algorithm, the 

masking operation and knowledge-guided mechanism are 

employed to address this issue. Regardless of the state vector 

and action set size, the KGDRL agent can effectively learn a 

convergent policy and achieve the best scheduling results. 

 

 
Fig. 8. Boxplot of average makespan on 5*5 validation instance 
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Fig. 9. Reconfiguration example of gantt chart on 5*5 instance 

Fig. 10. Makespan reconfiguration comparison on 5*5 instances 

Fig. 11. Policy variance on different flexibility instances 

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper addresses the resource reconfiguration 

scheduling problem for processing services in cloud 

manufacturing through cloud-edge collaboration and 

knowledge-guided deep reinforcement learning. The main 

conclusions are summarized as follows: 

1) The ultra-flexible CMfg framework is proposed to

support dynamic machine reconfiguration for varying 

processing requirements and to enable smart decision-making 

based on intelligent scheduling models and algorithms. 

2) We developed a CPP model that incorporates

reconfiguration variables to gain a comprehensive 

understanding of reconfiguration time variance and its impact 

on scheduling, enabling more effective problem-solving. 

3) Prior knowledge about reconfiguration time and machine

workload is embedded in the training network, making the 

learning policy of KGDRL more efficient than the baselines. It 

remains robust across various instance sizes, indicating 

significant potential for solving complex CPP scheduling 

problems in cloud manufacturing. 

In the future, digital twins can be introduced for real-time 

monitoring of CPP scheduling. Uncertainties related to 

reconfiguration can be tracked throughout the entire process, 

as digital twins can be deployed on both machines and jobs to 

accurately diagnose these uncertainties. Once identified, the 

digital twin can transmit the cause and type of the issue to the 

manufacturing cloud, enabling the system to generate 

appropriate solutions and thus ensure safe and efficient 

production.  

TABLE IV. ROBUSTNESS INSTANCE DETAILS 

Category C1 C2 C3 C4 C5 

rRt (s) N(1,0.1) N(10,0.1) N(20,0.1) N(100,0.1) N(1000,0.1) 

Train 
Number / 10 / 10 / 

Val  
Number 5 5 5 5 5 
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TABLE V. JOB PARAMETER OF PROPOSED INSTANCE  

Processing 

time(s) 

Jobs 

J1 J2 J3 J4 J5 

Operation 

O1 O11:126 O21:69 O31:107 O41:100 O51:86 

O2 O12:121 O22:159 O32:95 O42:126 O52:81 

O3 O13:111 O23:93 O33:62 O43:60 O53:122 

TABLE VI. MACHINE PARAMETER OF PROPOSED INSTANCE 

Machines M1 M2 M3 M4 M5 

Available stages S1 S2 S1 S3 S1 S3 S1 S2 

Processing 

speed 
1.0 0.2 0.7 1.0 0.4 0.3 1.7 1.5 

Reconfiguration 

time(s) 

S1-S2:9 

S2-S1:9 

S1-S3:9 

S3-S1:8 
/ / 

S1-S2:12 

S2-S1:9 
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