
Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 1



Abstract—To meet personalized user demands,
customized and personalized production has become an
effective manufacturing paradigm. However, wired
network connections inhibit flexible production line
reconfiguration and current DRL methods cannot
converge and obtain eligible scheduling results for
customized and personalized production (CPP) due to the
high-dimensional solution space and the negligence of
significant machine reconfiguration time. To address this
challenge, we first propose a wireless manufacturing
system framework to support ultra-flexible reconfiguration
and resource scheduling. Next, we build a reconfiguration
oriented scheduling model to reflect the significant impact
of reconfiguration time. Then, we design a Knowledge
Guided Deep Reinforcement Learning (KGDRL) algorithm
to effectively solve the CPP scheduling problem facing the
dimension explosion problem. The knowledge guidance
incorporates reconfiguration time and machine workload
to significantly reduce the feasible action space, enabling
the rapid convergence of KGDRL. The experiment results
show that our approach provides a robust and scalable
solution and obtains shorter total makespan of whole
production during scheduling.

Keywords—customized and personalized production,
reconfigurable manufacturing system, deep reinforcement
learning, knowledge guidance, resource scheduling

I. Introduction

ustomized and personalized products (CPPs), which best

meet individual needs, have gradually become the main

This work was supported in part by the National Key R&D Program
of China under Grant 2021YFB1715700; in part by the National
Natural Science Foundation of China under Grant 62103046,
72201266 and 72192843. (Corresponding author: Chen Yang, Yinfei
Jiang)

Shulin Lan, and Yinfei Jiang is with the School of Economics and
Management, University of the Chinese Academy of Sciences, Beijing,
China. (e-mail: lanshulin@ucas.ac.cn; jiangyinfei22@mails.ucas.ac.cn).

Chen Yang, and Liehuang Zhu are with the School of Cyberspace
Science and Technology, Beijing Institute of Technology, Beijing,
China. (e-mail: yangchen666@bit.edu.cn; liehuangz@bit.edu.cn).

Lihui Wang is with the Department of Production Engineering, KTH
Royal Institute of Technology, Stockholm 10044, Sweden (e-mail:
lihuiw@kth.se).

George Q. Huang is with the Industrial and Systems Engineering at
The Hong Kong Polytechnic University, Hong Kong (e-mail:
gq.huang@polyu.edu.hk).

Weiming Shen is with the State Key Lab of Digital Manufacturing
Equipment and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: wshen@ieee.org).

business model for many companies and a key factor in their

competitiveness [1]. Traditional discrete manufacturing

systems typically rely on rigid production lines, where each

machine is assigned to a fixed processing stage and production

jobs are executed sequentially. However, such systems often

struggle to meet the growing demand for flexibility in small-

batch, multi-variety production. To address these challenges,

lean manufacturing workshops increasingly adopt

reconfiguration scheduling as an effective solution. This

approach optimizes the use of limited cost and space resources

by enabling a single production system to flexibly handle a

wide variety of jobs under changing production conditions. To

further illustrate how reconfiguration improves production

efficiency in such settings, we take sand core manufacturing

in the foundry industry as a representative example, as shown

in Fig. 1. A typical production process includes three stages:

material handling, dip coating, and polishing. Since the

handling operation is relatively short while the dip coating

process involves longer waiting times, machine idleness and

task queuing often occur at the coating stage. Without

reconfiguration, some machines (e.g., M2 and M5) would

remain idle while multiple jobs are waiting to be processed.

By enabling reconfiguration, idle machines from the handling

and polishing stages can be reassigned to the coating stage,

effectively reducing machine idleness and improving

processing efficiency.

Fig. 1. Reconfiguration decision in sand core CPP production

However, reconfigurable production introduces new

challenges. Machines must be able to transition smoothly

between different types of operations to meet the diverse

requirements of various job types. Before performing a

specific operation, each machine must undergo a

reconfiguration process, which typically involves tool

Shulin Lan, Member, lEEE, Yinfei Jiang*, Chen Yang*, Member, lEEE, Lihui Wang,
George Q. Huang, Fellow, lEEE, Weiming Shen, Fellow, lEEE, and Liehuang Zhu, Senior Member, IEEE

Knowledge Guided DRL for Intelligent
Reconfiguration and Scheduling in Customized

and Personalized Manufacturing Workshop

C

mailto:lanshulin@ucas.ac.cn
mailto:liehuangz@bit.edu.cn
mailto:lihuiw@kth.se
mailto:gq.huang@polyu.edu.hk

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 2

switching, material preparation, and parameter adjustments.

These steps incur a non-negligible reconfiguration time, which

is often overlooked in existing models. Moreover,

reconfiguration time is highly dynamic and stage-dependent.

For example, reconfiguration from handling to dip coating is

relatively fast due to shared tools and materials, while

transitioning from coating to polishing takes significantly

longer. Even within the same coating stage, variations in

product color resulting from multi-variety production can lead

to considerable differences in reconfiguration time. This

variability in reconfiguration time introduces heterogeneity

and uncertainty into the scheduling environment, posing

considerable challenges for the deployment of efficient

learning-based scheduling algorithms. Therefore, an effective

production scheduling strategy is essential to account for the

impact of reconfiguration and ensure the overall efficiency of

the CPP production process.

Cloud Manufacturing systems (CMfg) have long been

considered a practical framework to traditional production

models due to their features such as low-latency connectivity,

full-shop collaboration, and real-time data sharing. However,

current CMfg cannot efficiently handle a group of CPP jobs

submitted by individual customers due to the following

reasons: 1) Wired network connections in existing

manufacturing systems limit machine mobility and hinder

flexible reconfiguration of production lines. State-of-the-art

wired manufacturing networks primarily focus on flexibility

design to enhance manufacturing efficiency [2-4]. Despite

these advancements, such systems remain unable to support

CPP scheduling due to limitations in machine mobility.

Without sufficient space and function flexibility, idle

machines could not be dynamically reconfigured to busy

stages to accelerate the processing. 2) Existing scheduling

models neglect the variety of reconfiguration time during

the scheduling process. These models are established to

address challenges such as reducing energy costs [5] and

managing workforce constraints [6]. Reconfiguration time can

vary significantly across different machines, potentially

leading to long processing time and, as a result, lower

production efficiency in the workshop. 3) Current

scheduling methods fail to obtain convergent solutions

under the dynamic nature and dimensional complexity of

the CPP problem. While machine learning algorithms and

heuristic approaches can produce near-optimal results for most

traditional flexible job-shop scheduling problems, they often

struggle in more complex scenarios. These methods primarily

address heterogeneous job types, such as batch processing [7],

job splitting [8], and random job arrivals [9]. However, they

largely overlook the reconfiguration status of machines, which

is critical for effective CPP scheduling. This oversight,

combined with the explosion of computational dimensions

introduced by machine reconfigurability, makes it challenging

to develop robust and efficient scheduling strategies.

As a result, this study aims to propose an intelligent

reconfigurable resource scheduling method for ultra-flexible

wireless CPP workshops in discrete manufacturing with multi-

variety, small-batch production. The main contributions of this

paper are summarized as follows:

1) An edge-computing based ultra-flexible CMfg

framework is proposed to support smart adaptive

reconfiguration and resource scheduling, according to CPP

job requirements. Idle machines can adjust their scheduling

status and move to busy production lines and process the

corresponding CPP jobs with the support of wireless

connections, enabling them to meet the diverse demands of

CPP jobs.

2) A reconfiguration-oriented scheduling model is

established to quantify the impact of reconfiguration time

on the scheduling process. The model incorporates CPP

jobs, reconfigurable production machines, different

processing speed, varying reconfiguration time, and

optimization objectives to reflect how reconfiguration

influences production. Once a machine is reconfigured,

these factors directly affect subsequent processing

operations and their corresponding processing time.

3) A Knowledge-Guided Deep Reinforcement Learning

(KGDRL) algorithm is developed to address the CPP

scheduling problem. By integrating prior knowledge of

reconfiguration time and machine workload, the proposed

approach effectively narrows the feasible action space,

enhances decision-making efficiency, and ensures the

selection of optimal actions in high-dimensional

environments at each time step. The knowledge-guided

strategy allows the agent to learn a robust and generalizable

scheduling policy across diverse CPP reconfiguration

scheduling scenarios.

The remaining paper is organized as follows. Section II

reviews related articles and summarizes essential research

gaps. Section III describes CMfg framework and the model of

CPP. Section IV designs KGDRL details to solve CPP.

Section V shows the experiments of the proposed method. The

last section concludes this research and points out future work.

II. RELATED WORKS

A. Flexible and Reconfigurable Manufacturing Systems

The flexible manufacturing system showcased remarkable

capabilities throughout the entire production lifecycle,

including processing, scheduling and logistics [10-12]. Wang

et al. [13] proposed a smart flexible manufacturing system

based on digital-twin and developed the corresponding

applications. Li et al. [14] analyzed the potential of flexible

manufacturing systems and Industry 4.0 for sustainable and

smart manufacturing. However, flexible manufacturing

systems face significant challenges in dynamic operation

scheduling during CPP scheduling due to the limited machine

mobility.

The reconfigurable manufacturing system (RMS) can

rapidly change its hardware, and software components to

adjust its production functionality [15]. Unlike traditional

flexible job shop scheduling problems, reconfigurable job

shop scheduling must explicitly account for machine

reconfiguration time. Zhang et al. [16] introduced a distributed

manufacturing scheduling system for mass customized

production. Hu et al. [17] proposed a collaborative system to

solve the large-scale dynamic scheduling problem. Production

3 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

line reconfiguration is increasingly recognized as an effective

approach to cope with production dynamics and operational

uncertainties in modern manufacturing systems [18-19]. A

reconfigurable job shop consists of multiple reconfigurable

systems or other flexible manufacturing units, forming a

production area that serves as a basic unit for enabling

personalized and customized manufacturing. It emphasizes

coordination across the entire production process and the

optimization of overall system performance.

These research work has provided valuable insights into the

scheduling problems of reconfigurable manufacturing systems,

but most studies do not consider machine reconfiguration time

as a variable, and therefore fail to account for the impact of

reconfiguration during CPP scheduling.

B. Intelligent Production Scheduling

Intelligent scheduling methods have been widely adopted in

manufacturing systems, playing a crucial role in improving

production efficiency, optimizing resource allocation, and

addressing uncertainties in production processes. Chen et al.

[20] proposed an advanced Grey Wolf algorithm for solving

hybrid scheduling problems. Mahmoodi et al. [21] proposed a

data-driven resource allocation method to deal with the smart

manufacturing resources. Khou et al. [22] used a particle

swarm optimization algorithm to improving both economic

efficiency and environmental sustainability in microgrids that

incorporate electric vehicles. Although existing studies have

achieved high-quality FJSP solutions using heuristic

algorithms, these methods are highly sensitive to initial

strategies. As a result, their efficiency and solution quality

cannot be reliably guaranteed in dynamic reconfiguration

scenarios.

As research continues to improve the accuracy of modeling

the dynamic characteristics of reconfigurable job shops, the

solution space for their scheduling optimization problems has

grown exponentially [23]. In this context, deep reinforcement

learning (DRL) has emerged as an effective tool for

addressing these challenges, leveraging its strong adaptability,

long-term optimization capabilities, and ability to handle

complex environments. Some scholars have used deep Q-

networks to help agents learn the features of high-dimensional

spaces [24,25], taking advantage of their strong generalization

ability and adaptability to solve high-dimensional scheduling

problems. Lu [26] applied DRL algorithm to studying the

scheduling of cloud manufacturing resources. Zhang [27]

proposed DRL algorithms to tackle the issue of multi-AGV

environments during the scheduling process.

Existing DRL algorithms mainly focus on optimizing

traditional scheduling problems, ignoring reconfigurable

characteristic of CPP scheduling. As a result, the training

results often fail to converge and it becomes difficult to

effectively select the appropriate processing actions in high-

dimension spaces.

III. PROBLEM FORMULATION

A. System Framework

This work proposed an edge-cloud based manufacturing

system framework for CPP production. As shown in Fig. 2.

The framework is composed of the following components.

1) CPP CMfg Platform

The CMfg platform can accept the CPP jobs submitted by

distributed individuals or groups. The jobs contain important

CPP parameters. It also provides other related services, such

as production planning, job assignment, data acquisition,

visibility and traceability services. CPP jobs are decomposed

into a lot of operations that can be processed at different

stages of the workshop. The platform also provides visibility

and traceability services for customers to track manufacturing

progress. It can integrate and connect a group of smart

factories but here we only consider the case of one smart

factory (the flow shop).
2) Manufacturing Node

The edge manufacturing node (EMN) is an edge-computing

based manufacturing service node that can accept personalized

production jobs distributed from the CMfg platform, provide

data processing and storage services for the shopfloor things

and manage the production processes in the workshop. EMN

collects the real-time status of the manufacturing things and

makes smart decisions using these data and intelligent

scheduling models and algorithms. Based on the status of

things and jobs, EMN can reconfigure the resources and

schedule the jobs to the resources optimally.
3) Wireless Smart Factory

All the elements in the factory are connected using wireless

communication technologies such as 5G/6G. Without long

electrical cables between machines, the wireless connection

between machines allows free re-arrangement of the

production lines [28] and support the continuously

improvement of resource scheduling [29]. The stages are

settled as the largest set of the processes required by different

CPP jobs. A CPP job may only flow across some of the stages,

thus easily leading to the unbalanced workload in different

stages. Therefore, making smart decisions on the

reconfiguration and scheduling of production resources for

CPP jobs is crucial.

B. Reconfigurable Jobshop Optimization Model

 The Reconfigurable CPP Scheduling Problem (RCSP)

involves scheduling a set of CPP jobs on reconfigurable

machines. Suppose there has n CPP jobs  | 1,2,...J j j n 

and r machines  | 1,2,...M m m r  . For each job j , it has k

operations  | 1,2,...O i i k  . The objective function is to

minimize the makespan of the entire scheduling process

1...
max{ }j
j n

T


. Operation scheduling matrix
j is the optimization

variable, denoting the operation results of job j.
j is n r

matrix where the value of matrix element j

ir are :

1 if operation of job is to be excuted in machine

0 otherwise

j

im

i j m



 


 (1)

We use X to represent the processing sequence of operations,

and its specific definition is as follows:

1 if operation is next step of job operation

0 otherwise

j

ip

p j i
X


 


 (2)

The optimization model, which aims to minimize the

makespan, is presented as follows. Detailed definitions of the

variables are provided in Table I.

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 4

Stage 1 Stage 2 …… Stage n

Material Flow

Reconfigurable

Reconfigurable

Busy BusyIdle

AGV

Production

Scheduling Service

Visibility Service

Data Capture Service

Storage Service

Edge Manufacturing Node

Scheduling

Plan

Manufacturing

Progress

Production Planning

Service

Job decomposition

Service

Visibility Service Traceability Service

CPP CMfg Platform

Customers

CPP Jobs

…

Manufacturing Progress

…

Job j

Job 2

Job 1 Operation O11,… O1N1

Operation O21,… O2N2

Operation Oj1,… OjNj

…

Subtask Processing

Wireless Smart Factory

CPP Jobs

Fig. 2. An edge-cloud and wireless connection based CMfg framework for CPP production

1...
 min max{ }j

j n
T


 (3)

1

. .
r

j

ij im r

m

s t OPTY MATY


  (4)

0 m

1

r

j

m im

m

Ast Tt


  (5)

1 1

 X () 0
r r

j j j

ip pj ij iu pv uv

u v

Sot Eot Tt 
 

    (6)

 
1

 Eot ()
r

j

ij ij im ij m ij m ij

m

Sot q Pt OPTY Sp OPTY


     (7)

 r 1

1

r

j

j ij im m

m

T Eot Tt 



   (8)

 
1 1

 () 0
r r

j l j l

im pm pl ij pl ij iu pv uv

u v

Sot Eot Sot Eot Rt   
 

        (9)

 () 0j

im ij mSot Ast    (10)

 () 0j

im ij mEot Aet    (11)

 1... , 1... , 1...j n i k m r   (12)

 1... , 1... , 1... , 1...l n p k u r v r    (13)

Constraint (4) ensures that each operation is assigned to an

accessible machine. Constraint (5) ensures that each operation

starts only after the raw material transfer time, where index 0

denotes the raw material storage point. Constraint (6) requires

that the previous process and the transfer of semi-finished

products are completed before the next process starts.

Constraint (7) specifies the processing time for each operation.

Constraint (8) denotes that the completion time of each job is

when the product is transferred to the finished product storage

area (index r+1). Constraint (9) ensures that the start time of

the next process is after the end time of the previous process

plus the machine reconfiguration time. Constraints (10) and

(11) ensure that the processing time falls within the machine's

available working window, meaning that the available start

time is no earlier than the actual start time (10), and the

available end time is no later than the actual end time (11).

Notifications (12) and (13) define the range of all constraints.

TABLE I. VARIABLE EXPLANATION

variable explanation

ijOPTY processing stage type of operation i in job j

ijq operation workload of operation i in job j

mPt processing time of machine m per workload

uvRt reconfiguration time within machine u to machine v

uvTt transfer time from machine u to machine v

0mTt transfer time from raw material storage to machine m

 1m rTt 
 transfer time from machine m to final product storage

mAst available starting time of machine m

mAet available stop time of machine m

mMATY set of processable type of machine m

mSp processing speed of machine m

ijSot ijEot start and end time of operation i in job j

IV. METHOD

In this section, we present the rationale of our method. We

first formulate Markov Decision Process model in our

learning algorithm. Then, we design a knowledge guidance

method to learn the scheduling policy, followed by the

introduction of training algorithm. Our algorithm proposes an

innovative knowledge-guided deep reinforcement learning

framework, in which reconfiguration time is explicitly

integrated into two key components: the reward function and

the knowledge guidance. By embedding reconfiguration-

related knowledge into these critical stages, the algorithm can

rapidly learn dynamic policies and derive convergent and

robust scheduling solutions for CPP scheduling. The

workflow of the proposed knowledge guided DRL algorithm

is shown in Fig. 3.

The scheduling process is actually a series of consecutive

decisions assigning jobs to the corresponding machines. The

value of i

jr is determined one by one during this process. The

5 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

scheduling process considered here works as follows. At the

beginning, the CPP scheduling instance is initialized into the

state vector
0S . Then, the job vector and machine vector are

aggregated together to form the action vector. The knowledge

network and policy network will calculate the action

probabilities, respectively, after applying the masking method.

The system will then sample the action
0 for this time step

based on the combined probability. Once the decision is made,

the system will continue scheduling if the process is not yet

complete. At each decision step t (time 0 or when an operation

is completed), the agent observes the current system state
tS

and makes a decision  t
. Then, the environment transits to the

next decision step t + 1. The process iterates until all the

operations are scheduled. The corresponding MDP is defined

as follows.

State: The state is used to represent the status of the system

and guide decision-making. The state vector at time 𝑡 is

denoted as a node vector     , , t tS N i i J M , which

consists of both machine nodes and job nodes. J and M

represent all CPP jobs and machines respectively. To

comprehensively characterize the workshop scenario, each

node vector is composed of six features

     , , , , , , ,  t t t t t t t i
N i wb at nn ut co cs i J M . In our framework,

the nodes consist of both machines and jobs, and the feature

vector is constructed to incorporate critical attributes from

both types. A well-designed feature should capture historical,

current, and future information. In traditional FJSP solutions,

node utilization is used to represent historical information,

while idle time characterizes future information [30]. For

current information, typical descriptors include processing

speed, available resources, operational status, and task

operations [31]. To ensure that the features comprehensively

reflect the production state, all of these aspects are

incorporated into the feature vector. A detailed explanation of

the selected features is provided in Table Ⅱ.

TABLE II. FEATURE EXPLANATION

Feature name explanation

wb working binary of node

at available time(completion time) of node

nn number of available accessable nodes

ut utility of node

co the current operation number of node

cs current speed of node

Action: This article combines the operation selection and

the machine assignment as a composite decision. An action
ta

is defined as a feasible operation-machine pair and None type

action     ,t ij ka o M None at step t, where
ijO is eligible

and
kM is idle and can process

ijO .The action vector is

concatenated by operation and machine vector,

    ' ,t t tS concat N J N M . In RCSPs, sometimes when the

machine chooses a "None" action, enabling it to subsequently

select the action with shorter reconfiguration time, thereby

reducing the makespan. Therefore, when using the actor to

generate a policy, we divide the action vector into available

and unavailable parts by masking method and output the

corresponding probabilities through policy network

respectively.

Transition: The state vector depends on the previous state

and action, determining the transition function. Notably, when

all jobs are still being processed, the state does not change. A

new state is generated at the moment a new operation is

completed after time t, marking this time as t+1. At this point,

1tS 
is updated based on the new node vector. The next action,

1ta 
, is then selected based on

1tS 
, and this iterative process

continues until all jobs in the manufacturing workshop are

completed.

Reward: Reward function is designed to estimate the action

and optimize the policy. In the state-of-art research on jobshop

scheduling, the reward function is commonly designed as the

difference between the estimated completion times of
tS and

1tS . In our study, we have adopted this approach.

Additionally, we have considered the impact of machine

reconfiguration time to guide the agent in learning strategies

that minimize reconfiguration time:

        1 1, ,t t t t t tr S S a T S T S trantime a    (14)

where  T S is current time of state S and trantime is machine

reconfiguration time of available.

Policy: A policy  | t ta S defines a probability distribution

over the action set for each state. Our policy network output

avail and nonavail action probability separately based on state

vector at each decision time. To learn effective strategies

faster, we deployed a knowledge-guided structure in

outputting action probability. The knowledge network outputs

a probability distribution of actions, and actions are sampled

based on the knowledge guidance probability. Detailed

structure of knowledge network is discussed in next section.

A. Knowledge Guidance Structure

The Flexible Job-Shop Scheduling Problem is strongly NP-

hard, and the inclusion of machine reconfiguration time

further increases its complexity. To address this large-scale

problem, a knowledge-guided structure is integrated into

algorithm. The efficacy of knowledge-guided structure in

bolstering the efficacy of training results has been empirically

validated [32]. The if-then rule is a prevalent form of general

advice, this approach has been empirically validated to

improve training results and accelerate algorithm training

process [33].

To minimize makespan, a general heuristic is proposed to

speed up training and improve scheduling results. This

heuristic is influenced by the principles of the IF A THEN B

structure and e-greedy strategy. it can be summarized as

follows: IF the available action has a shorter machine

reconfiguration time and a heavier sequential workload,

THEN the guidance probability for selecting this action is

higher. This method balance exploration and exploitation

during learning, preventing the system from settling on locally

optimal solutions. Considering the possibility of zero

reconfiguration time, the general advice probability

distribution of available action is:

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 6

J1M3

J1M3

avail nonavail

J1M2

J1M2

+

update

policy network

update

jobshop status
move to next

decision time

Environment Transition

State Vector

J1

Jn

M1

Mk

...

...

(wb,at,nn,ut,co,cs)

Action Vector

J1M1

...

(wb,at,nn,ut,co,cs)

JnM

k

Avail Masking

...

J1M1

JnMk
policy

network

knowledge

network

...

Guidance Probablity

J1M1

...
JnMk

Actor Probability

J1M2

J1M1

J1M2

JnMk

Action Sampling

action

JSRS

instance

Environment

Initialization

finish

schedule

?

learned policy

scheduling results

Yes, output

No, continue

...

avail nonavail

J1M3

+

: zero value in state/probability vector

: non-zero value in guidance probability vector

: non-zero value in avail probability vector

: non-zero value in nonavail probability vector

Fig. 3. Workflow of proposed knowledge guided DRL method

   1
2

/t tS trantime a trantime a (15)

   2
2

/t tS workload a workload a (16)

1 1 2 2

1 2
1 1

(/) (/)
t

S S S S

ap e e e e    (17)

where trantime is machine reconfiguration time of available

action and workload is remaining processing time of the

available action. The guidance probability for a non-available

action is represented as a zero vector, so the knowledge

network outputs a single probability vector, as shown in Fig. 3.

In summary, the knowledge network serves as the output

function of
tap . Due to the high variance of reconfiguration

and processing time between different jobs, using standard

activation functions like softmax can lead to probability

distributions that are either too concentrated (0-1distribution)

or too scattered (uniform distribution) to be effective.

Therefore, in this case, we adopt the 1-norm activation form to

obtain a more stable probability distribution of
tap .

B. Training

KGDRL uses Proximal Policy Optimization (PPO)

structure for training, which deployed an actor-critic structure.

Actor is the policy network  , and critic v predicts the

value of state
tS . Both actor and critic are designed as MLPs

with two hidden layers,  is deployed with a L1-norm

activation as mentioned before, the overall training structure is

shown in Fig. 3. As shown in Algorithm 1, the training is

performed in I iterations and  independent instances during

each iteration, we compute the guidance probabilities for each

state and incorporate them into the probabilities outputted by

the policy network, to optimize the agents’ sampling strategy.

The actor probability of avail action is calculated using avail

state vector, and similarly for nonavail action.

Algorithm 1 : KGDRL

Initialize Policy network
 and Critic network V with trainable

parameters  and 

Initialize  independent instances

For 1,2,...iter I do :

For 1,2,...b  do :

Initialize
tS based on instance b

While
tS is not terminal do :

Initialize
ta , mask vector

availF and
nonavailF based on

tS

1, 0 if Oavail nonavail ij tF F a  

Compute action distribution based on policy network

     ,avail avail ij t nonavail nonavail ij tp F O S p F O S   

Compute general advice distribution
tadvice ap p

Sample action a based on
advice avail nonavailp p p p  

Reverie reward
tr and next state

1tS 

1t tS S 

 Compute GAE
tA based on

tr ,
1tS 

for each step

 Compute PPO loss  based on
tA

Update network parameters  and  based on PPO loss 

Return

V. EXPERIMENTS

In the experiments, we evaluate our proposed KGDRL

model on RCSPs. Unlike dynamic scheduling problem with

setup time, the machine reconfiguration time is related to

operation stages, but not job sequence. Therefore, we are

incapable of verifying our algorithm utilizing public datasets,

7 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

compelling us to independently construct RCSP instances for

testing. To ensure the effectiveness of the KGDRL method

across all CPP problems, a robustness test has been conducted.

Finally, we analysis the features of machine reconfiguration,

particularly the effectiveness across different instances.

A. Experiment Setting

1) Instance Construction

In real-world CPP scheduling settings, each job consists of

multiple processing operations, and the workload required for

each operation varies. Additionally, different stages require

different machine components, leading to variations in

machine processing speeds. Furthermore, due to different

reconfiguration methods between components, reconfiguration

times are not uniform across operations on the same machine.

As a result, three key variables randomly vary in real-world

reconfigurable production instances: operation processing

time, machine reconfiguration time, and processing speed.

Based on the scheduling model, the operation processing time

is  ij ij r ijp q Pt OPTY  . According to the Central Limit

Theorem, the distribution of the mean of a random variable

will follow a normal distribution when the data size is large.

Based on this, we use a normal distribution function to

generate three key random parameters. It is important to note

that reconfiguration time is always shorter than operation

processing time, as machines only need to switch their

components during reconfiguration, so the average

reconfiguration time is set to 0.1 times the average processing

time and the average machine processing speed is defined as 1,

as shown in Table III.

TABLE III. INSTANCE DETAILS

Size(n*m) ijp (s)
rRt (s)

rSp (s)

5*5, 10*5, 20*5,

5*10, 10*10, 20*10
N(100,0.1) N(10,0.1) N(1,0.1)

2) Configuration

 We deployed one hidden layer in both the actor and the

critic network. For training, the number of iterations and

instance batch size are set to 1000I  and 10  to achieve

the best scheduling results, min and max replay buffer is 128

and 2048 respectively, allowing the agent to learn an effective

policy in less time. For PPO loss, the clip ratio and

coefficients of entropy is 0.1 and 0.01 respectively to ensure

the convergent scheduling policies. The PPO epochs are set to

15. These hyperparameters are empirically tuned on the 5 × 5

instance and fixed on the remaining sizes.
3) Baselines

The learned policies are compared to three widely used

heuristic rules and three well-known DRL algorithms.

Random: Select action randomly.

MWKR: Select action with most work remaining.

FIFO: Select action firstly arrive in jobshop.

DDQN: Double Deep Q Learning [34].

A2C: Advantage Actor Critic [35].

DDPG: Deep Deterministic Policy Gradient [36].

Given that each stage requires identical processing

resources, the reconfiguration time remains constant between

identical stages. Furthermore, the reconfiguration time is zero

when sequentially processing operations within the same stage.

B. Performance

1) Convergence of Algorithms

Based on the generation rules provided in Tab.Ⅲ, we

generated 10 instances for each of the six dimensions to train

our proposed KGDRL algorithm. We then calculated the

average makespan for the 10 instances in each size. The

training process of the KGDRL method is stable and

converged rapidly. As shown in Fig. 4, the training curve for

six different sizes exhibit some fluctuations occur within the

first 200 iterations, followed by swift convergence. With the

help of the knowledge-guided network, the DRL agent can

find an effective search policy during scheduling. The

convergence performance is consistent across all instance sets,

highlighting the necessity of the proposed knowledge-guided

mechanism.

Fig. 4. Training curve of KGDRL

To demonstrate the potential of KGDRL, we compared

their training results with other baseline methods, as discussed

earlier. Specifically, we evaluated the convergence of all

baseline algorithms by calculating their standard makespan

after 1000 iterations. The standard makespan is computed by

dividing the makespan of each instance by the ratio parameter

(defined as [n/m], where n is the number of jobs and m is the

number of machines). For example, the ratio parameter is 1

for a 5*10 instance. As shown in Fig.5, for converged training

policies, we observe a stable standard makespan across all

instances after 1000 iterations. Specifically, KGDRL and

DDQN exhibit stable policies, with their makespans

consistently close to 400 across all six instance sizes. In

contrast, the standard makespan for most instances trained by

A2C and DDPG exceeds 800 and increases significantly with

dimensionality, indicating poor scalability and convergence.

The high training fluctuations observed in these two

algorithms indicate that their training results are unreliable, as

they continue to search for actions randomly and have not

learned an effective search policy. Consequently, we select the

DDQN algorithm and other three rules for comparison in

scheduling results due to the unconvincing results provided by

A2C and DDPG.

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 8

Fig. 5. Standard makespan of baselines after 100 iterations

2) Scheduling Results

For CPP production, a shorter makespan indicates superior

performance. The total makespan is the maximum completion

time among all jobs, we compared the makespan results of all

baselines in six size, as shown in Fig. 6. We can find that as

the number of jobs increases, adding more machines results in

greater improvements in makespan. This finding highlights

the value of reconfiguration. When the number of available

job-machine action pairs increases, dynamic reconfiguration

effectively mitigates workload imbalances, accelerating the

optimization of makespan. In detail, our proposed KGDRL

has achieved better scheduling results compared to the

baselines. By noticing that MKWR rules achieved the best

scheduling results of all heuristic rules in all size instances,

KGDRL significantly outperform MWKR in five instances,

indicating the value of DRL when solving high dimension

scheduling problems like CPP. KGDRL also provides a more

stable training policy compared to other DRL algorithms.

KGDRL performed better in most cases and is more stable

compared to DDQN. Although the DDQN algorithm performs

well in the 20*5 case, it significantly underperforms the

MWKR rule on high-dimensional cases, exhibiting a lack of

sufficient robustness.

C. Robustness

1) Training Time

To verify the insight that KGDRL maintains stable

scheduling results compared to DDQN, we conducted a

detailed robustness check. The key robustness indicator for

these algorithms is their training time, which we compared

across all baseline methods, as shown in Fig. 7. KGDRL

demonstrates stable training times across all instance sizes,

while DDQN exhibits substantial fluctuations, with a

discrepancy of up to 6000 seconds across the six instance

sizes. The training time pattern of DDQN is similar to that of

A2C and DDPG, which, as previously analyzed, fail to select

effective actions during training. This suggests that the

training process of DDQN relies heavily on random selection,

resulting in unstable training outcomes.

The advanced mechanism of KGDRL supports stable

training. KGDRL used a non-available action mask

mechanism, which effectively filters out unavailable actions

during scheduling across all instances, thus facilitating

efficient learning.
2) Scalability on Multi-Scale Instances

To further evaluate the robustness of KGDRL, we

considered the variance in reconfiguration time, which is a

critical factor in real-world applications. Given the significant

volatility of machine reconfiguration times in CPP scheduling,

it is essential to verify whether our approach delivers

favorable scheduling performance across various

reconfiguration time scenarios. For robustness check, we

initially trained KGDRL using the training set with 5 different

categories with 5*5 instances, and then deployed the learned

strategy on a validation set, comparing it with our previously

constructed baselines. Detailed information of robustness

instance is shown in Tab.Ⅳ. Overall, the proposed KGDRL

method not only achieves the best scheduling outcomes but

also demonstrates excellent robustness, with both the mean

and standard deviation of the makespan on the validation set

significantly lower than all baseline methods.

Fig. 6. Average Makespan of six sizes

9 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

Fig. 8 presents the average makespan on the validation set.

Among all methods, KGDRL exhibits the most concentrated

distribution, indicating its ability to consistently achieve high-

quality scheduling results under the guidance of the

knowledge network. In contrast, DDQN exhibits a larger

standard deviation and a higher mean makespan, aligning

closely with random rules. This further validates the reliance

on random selection during the DDQN training process. As

the action space expands with increasing instance size, the

action vector gradually becomes sparse, with most actions

having the same, but highest, probabilities. As a result, the

DRL agent cannot select the most suitable action and is forced

to randomly choose one. To address this, KGDRL

implemented an aggregation mechanism for three types of

action probabilities vectors to eliminate the sparsity, enabling

the agent to select the appropriate action at each decision point.

D. Further Analysis

1) Reconfiguration Details

Machine reconfiguration operations play a crucial role in

shaping future scheduling decisions. Through effective

reconfiguration, a dynamically reconfigurable workshop can

efficiently reorganize diverse and customized jobs, and reduce

the overall completion time of the workshop. We presented a

5×5 instance as an example, the detailed job and machine

parameters for this instance are provided in Tables V and VI.

This example illustrates the dynamic nature of CPP instances,

as evidenced by significant variations in processing times

across operations (up to 100 seconds), processing speed

differences (up to 80% on Machine M1), and reconfiguration

time fluctuations (up to 33% on Machine M5). Due to the

limited reconfigurability of machines, conventional

scheduling methods result in low work efficiency for

machines M3 and M4, as most jobs are assigned to highly

reconfigurable machines. This imbalance significantly

increases the overall scheduling time of the workshop.

However, after implementing reconfiguration operations,

machines M3 and M4 can still complete jobs within their

processing range, as shown in the Gantt chart in Fig. 9,

ensuring overall production efficiency.

To further analyze the impact of reconfiguration on CPP,

we calculated the average makespan and reconfiguration time

for 25 validation instances, as shown in Fig. 10.

Fig. 7. Training time of baselines after 100 iterations

It can be observed that KGDRL performs well, even though

the average reconfiguration time is greater than the processing

time. The trained policy strikes a balance between

reconfiguration and processing, thereby maximizing the

operational efficiency of the job shop. When dealing with

instances that have high reconfiguration times, the production

workshop is more likely to experience an unbalanced

workload, as machines need much more reconfiguration time

to process essential jobs. To address this, our knowledge-

guided rules incorporate workload design. By considering

machine workload, the agent can better understand the

processing sequence, thereby reducing the impact of

reconfiguration time. The agent may opt for actions with

longer processing times but shorter reconfiguration times

when the reconfiguration time of target action is extremely

long, allowing KGDRL to achieve the best balance between

processing and reconfiguration, ultimately resulting in better

CPP scheduling policies.
2) Flexibility Analysis

Given that machine flexibility greatly varied in real-world

manufacturing contexts, we analyzed its impact on scheduling

strategies. For reconfigurable machines, the flexibility level of

jobshop is defined as the sum of the processable stages of each

machine divided by the total processing stages.

To ensure the conclusions are representative, we analyze

the scheduling results of the validation dataset with different

machine reconfiguration time. All instances are divided into

three groups: low, medium and high. As shown in Fig. 11,

KGDRL achieves the best results across all flexibility levels,

while DDQN performs worse than both MWKR and FIFO

rules at all levels. The performance gap is particularly larger at

medium and high flexibility levels. These results highlight the

limitations of Deep Q networks when handling large-scale

data. As flexibility increases, the state vector expands rapidly,

and the Q network struggles to effectively capture key features

of high-dimensional tensors, leading to low action selection

efficiency throughout the training process, which degrades

policy performance. In our proposed KGDRL algorithm, the

masking operation and knowledge-guided mechanism are

employed to address this issue. Regardless of the state vector

and action set size, the KGDRL agent can effectively learn a

convergent policy and achieve the best scheduling results.

Fig. 8. Boxplot of average makespan on 5*5 validation instance

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 10

Fig. 9. Reconfiguration example of gantt chart on 5*5 instance

Fig. 10. Makespan reconfiguration comparison on 5*5 instances

Fig. 11. Policy variance on different flexibility instances

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper addresses the resource reconfiguration

scheduling problem for processing services in cloud

manufacturing through cloud-edge collaboration and

knowledge-guided deep reinforcement learning. The main

conclusions are summarized as follows:

1) The ultra-flexible CMfg framework is proposed to

support dynamic machine reconfiguration for varying

processing requirements and to enable smart decision-making

based on intelligent scheduling models and algorithms.

2) We developed a CPP model that incorporates

reconfiguration variables to gain a comprehensive

understanding of reconfiguration time variance and its impact

on scheduling, enabling more effective problem-solving.

3) Prior knowledge about reconfiguration time and machine

workload is embedded in the training network, making the

learning policy of KGDRL more efficient than the baselines. It

remains robust across various instance sizes, indicating

significant potential for solving complex CPP scheduling

problems in cloud manufacturing.

In the future, digital twins can be introduced for real-time

monitoring of CPP scheduling. Uncertainties related to

reconfiguration can be tracked throughout the entire process,

as digital twins can be deployed on both machines and jobs to

accurately diagnose these uncertainties. Once identified, the

digital twin can transmit the cause and type of the issue to the

manufacturing cloud, enabling the system to generate

appropriate solutions and thus ensure safe and efficient

production.

TABLE IV. ROBUSTNESS INSTANCE DETAILS

Category C1 C2 C3 C4 C5

rRt (s) N(1,0.1) N(10,0.1) N(20,0.1) N(100,0.1) N(1000,0.1)

Train
Number / 10 / 10 /

Val
Number 5 5 5 5 5

11 Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop

TABLE V. JOB PARAMETER OF PROPOSED INSTANCE

Processing

time(s)

Jobs

J1 J2 J3 J4 J5

Operation

O1 O11:126 O21:69 O31:107 O41:100 O51:86

O2 O12:121 O22:159 O32:95 O42:126 O52:81

O3 O13:111 O23:93 O33:62 O43:60 O53:122

TABLE VI. MACHINE PARAMETER OF PROPOSED INSTANCE

Machines M1 M2 M3 M4 M5

Available stages S1 S2 S1 S3 S1 S3 S1 S2

Processing

speed
1.0 0.2 0.7 1.0 0.4 0.3 1.7 1.5

Reconfiguration

time(s)

S1-S2:9

S2-S1:9

S1-S3:9

S3-S1:8
/ /

S1-S2:12

S2-S1:9

REFERENCES

[1] Yang, Chen, et al. "Towards product customization and personalization
in IoT-enabled cloud manufacturing." Cluster Computing 20 (2017):
1717-1730.

[2] Vlachos I, Pascazzi R M, Ntotis M, et al. Smart and flexible
manufacturing systems using Autonomous Guided Vehicles (AGVs) and
the Internet of Things (IoT)[J]. International Journal of Production
Research, 2024, 62(15): 5574-5595.

[3] Zhou Y, Du S, Liu M, et al. Machine-fixture-pallet resources
constrained flexible job shop scheduling considering loading and
unloading times under pallet automation system[J]. Journal of
Manufacturing Systems, 2024, 73: 143-158.

[4] Javaid M, Haleem A, Singh R P, et al. Enabling flexible manufacturing
system (FMS) through the applications of industry 4.0 technologies[J].
Internet of Things and Cyber-Physical Systems, 2022, 2: 49-62.

[5] Milisavljevic-Syed J, Li J, Xia H. Realisation of responsive and
sustainable reconfigurable manufacturing systems[J]. International
Journal of Production Research, 2024, 62(8): 2725-2746.

[6] Rohaninejad M, Vahedi-Nouri B, Hanzálek Z, et al. An integrated lot-
sizing and scheduling problem in a reconfigurable manufacturing system
under workforce constraints[J]. International Journal of Production
Research, 2024, 62(11): 3994-4013.

[7] Li Y, Li X, Gao L, et al. Multi-agent deep reinforcement learning for
dynamic reconfigurable shop scheduling considering batch processing
and worker cooperation[J]. Robotics and Computer-Integrated
Manufacturing, 2025, 91: 102834.

[8] Pang, Shibao, et al. "Mass personalization-oriented integrated
optimization of production task splitting and scheduling in a multi-stage
flexible assembly shop." Computers & Industrial Engineering 162
(2021): 107736.

[9] Lei, Kun, et al. "Large-scale dynamic scheduling for flexible job-shop
with random arrivals of new jobs by hierarchical reinforcement
learning." IEEE Transactions on Industrial Informatics 20.1 (2023):
1007-1018.

[10] Delorme X, Fleury G, Lacomme P, et al. Modelling and solving
approaches for scheduling problems in reconfigurable manufacturing
systems[J]. International Journal of Production Research, 2024, 62(7):
2683-2704.

[11] Yang, Chen, et al. "Metaverse: Architecture, Technologies, and
Industrial Applications." 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE). IEEE, 2023.

[12] Zhao Z, Zhang M, Chen J, et al. Digital twin-enabled dynamic spatial-
temporal knowledge graph for production logistics resource allocation[J].
Computers & Industrial Engineering, 2022, 171: 108454.

[13] Wang K J, Lee T L. Designing a digital-twin based dashboard system
for a flexible assembly line[J]. Computers & Industrial Engineering,
2024, 196: 110491.

[14] Li Q, Tang W, Li Z. Leveraging Industry 4.0 for Sustainable
Manufacturing: A Quantitative Analysis Using FI-RST[J]. Applied
Sciences, 2024, 14(20): 9545.

[15] Koren, Yoram, et al. "Reconfigurable manufacturing systems." CIRP
annals 48.2 (1999): 527-540.

[16] Zhang, Lixiang, et al. "Distributed real-time scheduling in cloud
manufacturing by deep reinforcement learning." IEEE Transactions on
Industrial Informatics 18.12 (2022): 8999-9007.

[17] Hu, Y., Zhang, L., Zhang, Z., Li, Z., & Tang, Q. (2024). Flexible
assembly job shop scheduling problem considering reconfigurable
machine: A cooperative co-evolutionary matheuristic algorithm. Applied
Soft Computing, 166, 112148.

[18] Fu B, Bi M, Umeda S, et al. Digital Twin-based Smart Manufacturing:
Dynamic Line Reconfiguration for Disturbance Handling[J]. IEEE
Transactions on Automation Science and Engineering, 2025.

[19] Yelles-Chaouche A R, Gurevsky E, Brahimi N, et al. Minimizing task
reassignments under balancing multi-product reconfigurable
manufacturing lines[J]. Computers & Industrial Engineering, 2022, 173:
108660.

[20] Chen X, Li Y, Wang L, et al. Multi-objective grey wolf optimizer based
on reinforcement learning for distributed hybrid flowshop scheduling
towards mass personalized manufacturing[J]. Expert Systems with
Applications, 2025, 264: 125866.

[21] Mahmoodi E, Fathi M, Tavana M, et al. Data-driven simulation-based
decision support system for resource allocation in industry 4.0 and smart
manufacturing[J]. Journal of Manufacturing Systems, 2024, 72: 287-307.

[22] Khou S A, Olamaei J, Hosseini M H. Strategic scheduling of the electric
vehicle-based microgrids under the enhanced particle swarm
optimization algorithm[J]. Scientific Reports, 2024, 14(1): 30795.

[23] Serrano-Ruiz J C, Mula J, Poler R. Job shop smart manufacturing
scheduling by deep reinforcement learning[J]. Journal of Industrial
Information Integration, 2024, 38: 100582.

[24] Du Y, Li J. A deep reinforcement learning based algorithm for a
distributed precast concrete production scheduling[J]. International
Journal of Production Economics, 2024, 268: 109102.

[25] Yang, S., Wang, J., & Xu, Z. (2024). Learning to schedule dynamic
distributed reconfigurable workshops using expected deep Q-network.
Advanced Engineering Informatics, 59, 102307.

[26] Lu J, Yang J, Li S, et al. A2C-DRL: Dynamic scheduling for stochastic
edge–cloud environments using A2C and deep reinforcement learning[J].
IEEE Internet of Things Journal, 2024, 11(9): 16915-169.

[27] Zhang, F., Li, R., & Gong, W. (2024). Deep reinforcement learning-
based memetic algorithm for energy-aware flexible job shop scheduling
with multi-AGV. Computers & Industrial Engineering, 189, 109917.

[28] Liu, Xiaoyu, et al. "Multi-agent deep reinforcement learning for end—
edge orchestrated resource allocation in industrial wireless networks."
Frontiers of Information Technology & Electronic Engineering 23.1
(2022): 47-60.

[29] Zhou, Junlong, et al. "Dependable scheduling for real-time workflows
on cyber–physical cloud systems." IEEE Transactions on Industrial
Informatics 17.11 (2020): 7820-7829.

[30] Zhou T, Zhu H, Tang D, et al. Reinforcement learning for online
optimization of job-shop scheduling in a smart manufacturing factory[J].
Advances in Mechanical Engineering, 2022, 14(3): 16878132221086120.

[31] Song W, Chen X, Li Q, et al. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning[J]. IEEE Transactions
on Industrial Informatics, 2022, 19(2): 1600-1610.

[32] Liu L, Zhou W, Guan K, et al. Knowledge-guided machine learning can
improve carbon cycle quantification in agroecosystems[J]. Nature
communications, 2024, 15(1): 357.

[33] Kuhlmann, Gregory, et al. "Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer." The AAAI-2004
workshop on supervisory control of learning and adaptive systems. 2004.

[34] Liu R, Piplani R, Toro C. Deep reinforcement learning for dynamic
scheduling of a flexible job shop[J]. International Journal of Production
Research, 2022, 60(13): 4049-4069.

Shulin Lan et al.: Knowledge Guided DRL for Intelligent Reconfiguration and Scheduling in Customized and Personalized Manufacturing Workshop 12

[35] Monaci M, Agasucci V, Grani G. An actor-critic algorithm with policy
gradients to solve the job shop scheduling problem using deep double
recurrent agents[J]. European Journal of Operational Research, 2024,
312(3): 910-926.

[36] Wang J, Zhou H, Guo J, et al. A Q-Learning-based Deep Deterministic
Policy Gradient Algorithm for the Re-entrant Hybrid Flow Shop Joint
Scheduling Problem with Dual-gripper[J]. Engineering Letters, 2025,
33(5).

